城市环境图像/GIS配准下的虚拟视觉伺服灵敏度研究

Hengyang Wei, M. Pressigout, L. Morin, M. Servieres, G. Moreau
{"title":"城市环境图像/GIS配准下的虚拟视觉伺服灵敏度研究","authors":"Hengyang Wei, M. Pressigout, L. Morin, M. Servieres, G. Moreau","doi":"10.23919/MVA.2017.7986915","DOIUrl":null,"url":null,"abstract":"This paper studies the sensitivity of pose estimation to the 2D measure noise when using virtual visual servoing. Attempting to apply virtual visual servoing to image/Geographic Information System (GIS) registration, the robustness to the noise in images is an important factor to the accuracy of estimation. To analyze the impact of different levels of noise, a series of image/GIS registration tests based on synthetic input image are studied. Also, RANSAC is introduced to improve the robustness of the method. We also compare some different strategies in choosing geometrical features and in the treatment of projection error vector in virtual visual servoing, providing a guide for parametrization.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of virtual visual servoing sensitivity in the context of image/GIS registration for urban environments\",\"authors\":\"Hengyang Wei, M. Pressigout, L. Morin, M. Servieres, G. Moreau\",\"doi\":\"10.23919/MVA.2017.7986915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the sensitivity of pose estimation to the 2D measure noise when using virtual visual servoing. Attempting to apply virtual visual servoing to image/Geographic Information System (GIS) registration, the robustness to the noise in images is an important factor to the accuracy of estimation. To analyze the impact of different levels of noise, a series of image/GIS registration tests based on synthetic input image are studied. Also, RANSAC is introduced to improve the robustness of the method. We also compare some different strategies in choosing geometrical features and in the treatment of projection error vector in virtual visual servoing, providing a guide for parametrization.\",\"PeriodicalId\":193716,\"journal\":{\"name\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA.2017.7986915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了基于虚拟视觉伺服的姿态估计对二维测量噪声的敏感性。将虚拟视觉伺服技术应用于图像/地理信息系统(GIS)配准中,图像对噪声的鲁棒性是影响配准精度的重要因素。为了分析不同噪声水平对图像配准的影响,研究了一系列基于合成输入图像的图像/GIS配准试验。同时,为了提高算法的鲁棒性,还引入了RANSAC。比较了虚拟视觉伺服中几何特征的选择和投影误差矢量的处理方法,为参数化提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of virtual visual servoing sensitivity in the context of image/GIS registration for urban environments
This paper studies the sensitivity of pose estimation to the 2D measure noise when using virtual visual servoing. Attempting to apply virtual visual servoing to image/Geographic Information System (GIS) registration, the robustness to the noise in images is an important factor to the accuracy of estimation. To analyze the impact of different levels of noise, a series of image/GIS registration tests based on synthetic input image are studied. Also, RANSAC is introduced to improve the robustness of the method. We also compare some different strategies in choosing geometrical features and in the treatment of projection error vector in virtual visual servoing, providing a guide for parametrization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信