基于蟑螂入侵优化的网络流量分类特征选择方法

D. Boughaci, Fatma Belaidi, Imene Kerkouche
{"title":"基于蟑螂入侵优化的网络流量分类特征选择方法","authors":"D. Boughaci, Fatma Belaidi, Imene Kerkouche","doi":"10.1109/ICCIS49240.2020.9257694","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel feature selection technique based on the Roach Infestation Optimization (RIO) meta heuristic for Internet traffic classification. The RIO based feature selection technique is a pre-processing step before launching the classification task where the aim is to identify the set of significant features to be used in the classification task. The proposed technique is combined with both random forest and Bayes network classifiers and evaluated on the well known NIMS dataset. The numerical results show the effectiveness of the proposed technique for Internet traffic classification.","PeriodicalId":425637,"journal":{"name":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel feature selection technique based on Roach Infestation Optimization for Internet Traffic Classification\",\"authors\":\"D. Boughaci, Fatma Belaidi, Imene Kerkouche\",\"doi\":\"10.1109/ICCIS49240.2020.9257694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel feature selection technique based on the Roach Infestation Optimization (RIO) meta heuristic for Internet traffic classification. The RIO based feature selection technique is a pre-processing step before launching the classification task where the aim is to identify the set of significant features to be used in the classification task. The proposed technique is combined with both random forest and Bayes network classifiers and evaluated on the well known NIMS dataset. The numerical results show the effectiveness of the proposed technique for Internet traffic classification.\",\"PeriodicalId\":425637,\"journal\":{\"name\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Computer and Information Sciences (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS49240.2020.9257694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Computer and Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS49240.2020.9257694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于蟑螂入侵优化(RIO)元启发式的特征选择技术,用于互联网流量分类。基于RIO的特征选择技术是启动分类任务之前的预处理步骤,其目的是识别分类任务中要使用的重要特征集。该方法结合了随机森林和贝叶斯网络分类器,并在著名的NIMS数据集上进行了评估。数值结果表明了该方法对互联网流量分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel feature selection technique based on Roach Infestation Optimization for Internet Traffic Classification
In this paper, we propose a novel feature selection technique based on the Roach Infestation Optimization (RIO) meta heuristic for Internet traffic classification. The RIO based feature selection technique is a pre-processing step before launching the classification task where the aim is to identify the set of significant features to be used in the classification task. The proposed technique is combined with both random forest and Bayes network classifiers and evaluated on the well known NIMS dataset. The numerical results show the effectiveness of the proposed technique for Internet traffic classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信