一种分类器性能测试方法的比较:支持向量机分类器在乳房x光图像分类上的应用

S. J. Mohammed, Thekra Abbas
{"title":"一种分类器性能测试方法的比较:支持向量机分类器在乳房x光图像分类上的应用","authors":"S. J. Mohammed, Thekra Abbas","doi":"10.31642/JOKMC/2018/060102","DOIUrl":null,"url":null,"abstract":"— This paper compares between testing performance methods of classifier algorithm on a standard database of mammogram images. Mammographic interchange society dataset (MIAS) is used in this work. For classifying these images tumors a multiclass support vector machine (SVM) classifier is used. Evaluating this classifier accuracy for classifying the mammogram tumors into the malignant, benign or normal case is done using two evaluating classifier methods that are a hold-out method and one of the cross-validation methods. Then selecting the better test method depending on the obtained classifier accuracy and the running time consumed with each method. The classifier accuracy, training time and the classification time are considered for comparison purpose.","PeriodicalId":115908,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of a Classifier Performance Testing Methods: Support Vector Machine Classifier on Mammogram Images Classification\",\"authors\":\"S. J. Mohammed, Thekra Abbas\",\"doi\":\"10.31642/JOKMC/2018/060102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— This paper compares between testing performance methods of classifier algorithm on a standard database of mammogram images. Mammographic interchange society dataset (MIAS) is used in this work. For classifying these images tumors a multiclass support vector machine (SVM) classifier is used. Evaluating this classifier accuracy for classifying the mammogram tumors into the malignant, benign or normal case is done using two evaluating classifier methods that are a hold-out method and one of the cross-validation methods. Then selecting the better test method depending on the obtained classifier accuracy and the running time consumed with each method. The classifier accuracy, training time and the classification time are considered for comparison purpose.\",\"PeriodicalId\":115908,\"journal\":{\"name\":\"Journal of Kufa for Mathematics and Computer\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa for Mathematics and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31642/JOKMC/2018/060102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/JOKMC/2018/060102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

-本文比较了分类器算法在标准乳腺x线图像数据库上的测试性能方法。在这项工作中使用了乳房x线摄影交换协会数据集(MIAS)。为了对这些肿瘤图像进行分类,使用了多类支持向量机(SVM)分类器。使用两种评估分类器的方法来评估该分类器对乳房x光片肿瘤进行恶性、良性或正常分类的准确性,这两种评估分类器方法是一种保留方法和一种交叉验证方法。然后根据得到的分类器精度和每种方法的运行时间选择较好的测试方法。为了比较,我们考虑了分类器的准确率、训练时间和分类时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of a Classifier Performance Testing Methods: Support Vector Machine Classifier on Mammogram Images Classification
— This paper compares between testing performance methods of classifier algorithm on a standard database of mammogram images. Mammographic interchange society dataset (MIAS) is used in this work. For classifying these images tumors a multiclass support vector machine (SVM) classifier is used. Evaluating this classifier accuracy for classifying the mammogram tumors into the malignant, benign or normal case is done using two evaluating classifier methods that are a hold-out method and one of the cross-validation methods. Then selecting the better test method depending on the obtained classifier accuracy and the running time consumed with each method. The classifier accuracy, training time and the classification time are considered for comparison purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信