考虑慢适应和高斯数据的NSAF算法的随机模型

J. Kolodziej, O. J. Tobias, R. Seara
{"title":"考虑慢适应和高斯数据的NSAF算法的随机模型","authors":"J. Kolodziej, O. J. Tobias, R. Seara","doi":"10.1109/ITS.2006.4433402","DOIUrl":null,"url":null,"abstract":"This paper proposes a stochastic model for the normalized subband adaptive filters (NSAFs), considering slow adaptation and Gaussian input signals. Such a filter structure is an alternative to the classical full-band normalized least-mean-square (NLMS) algorithm, aiming to improve the convergence speed under correlated input data. Analytical models for the first moment of the adaptive filter weight vector and the learning curve are derived. For such, the time-varying nature of the normalized step-size parameter as well as a regularization factor, which prevents division by zero during the normalizing operation, are taken into account. Through numerical simulations the accuracy of the proposed model is confirmed.","PeriodicalId":271294,"journal":{"name":"2006 International Telecommunications Symposium","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic model for the NSAF algorithm considering slow adaptation and Gaussian data\",\"authors\":\"J. Kolodziej, O. J. Tobias, R. Seara\",\"doi\":\"10.1109/ITS.2006.4433402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a stochastic model for the normalized subband adaptive filters (NSAFs), considering slow adaptation and Gaussian input signals. Such a filter structure is an alternative to the classical full-band normalized least-mean-square (NLMS) algorithm, aiming to improve the convergence speed under correlated input data. Analytical models for the first moment of the adaptive filter weight vector and the learning curve are derived. For such, the time-varying nature of the normalized step-size parameter as well as a regularization factor, which prevents division by zero during the normalizing operation, are taken into account. Through numerical simulations the accuracy of the proposed model is confirmed.\",\"PeriodicalId\":271294,\"journal\":{\"name\":\"2006 International Telecommunications Symposium\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Telecommunications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2006.4433402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2006.4433402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种考虑慢自适应和高斯输入信号的归一化子带自适应滤波器的随机模型。该滤波器结构是经典全频带归一化最小均方(NLMS)算法的替代方案,旨在提高相关输入数据下的收敛速度。推导了自适应滤波器权向量一阶矩的解析模型和学习曲线。为此,考虑了归一化步长参数的时变性质以及正则化因子,该因子防止在归一化操作中被除零。通过数值模拟验证了该模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic model for the NSAF algorithm considering slow adaptation and Gaussian data
This paper proposes a stochastic model for the normalized subband adaptive filters (NSAFs), considering slow adaptation and Gaussian input signals. Such a filter structure is an alternative to the classical full-band normalized least-mean-square (NLMS) algorithm, aiming to improve the convergence speed under correlated input data. Analytical models for the first moment of the adaptive filter weight vector and the learning curve are derived. For such, the time-varying nature of the normalized step-size parameter as well as a regularization factor, which prevents division by zero during the normalizing operation, are taken into account. Through numerical simulations the accuracy of the proposed model is confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信