基于马氏距离的改进像素相关性图像分割

Lihua Song, Xiaofeng Zhang
{"title":"基于马氏距离的改进像素相关性图像分割","authors":"Lihua Song, Xiaofeng Zhang","doi":"10.1504/IJICS.2018.10012573","DOIUrl":null,"url":null,"abstract":"Image segmentation is to partition one given image into different regions. In essence, the procedure of image segmentation is to cluster the pixels into different groups according to the retrieved features. However, artefacts in the given images make the features be contaminated, resulting in poor performance of current segmentation algorithms. Therefore, how to reduce the effect of image artefacts is one hot topic in image processing. In current algorithms, neighbour information is adopted to resist the effect of image artefacts. However, when the image is contaminated with high-level noise, current algorithms also perform poor. Recently, non-local information is introduced to improve the quality of segmentation results, in which pixel relevance between pixels is crucial. In this paper, pixel relevance is measured based on Mahalanobis distance. More specifically, we consider the distribution of different samples and relevance interference between samples in the procedure of computing pixel relevance. Then, a new algorithm based on the novel pixel relevance is proposed, where non-local information can be incorporated into fuzzy clustering for image segmentation. The new algorithm can improve the robustness of corresponding algorithms greatly. Experiments on different noisy images show that the proposed algorithm can retrieve better results than conventional algorithms.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved pixel relevance based on Mahalanobis distance for image segmentation\",\"authors\":\"Lihua Song, Xiaofeng Zhang\",\"doi\":\"10.1504/IJICS.2018.10012573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is to partition one given image into different regions. In essence, the procedure of image segmentation is to cluster the pixels into different groups according to the retrieved features. However, artefacts in the given images make the features be contaminated, resulting in poor performance of current segmentation algorithms. Therefore, how to reduce the effect of image artefacts is one hot topic in image processing. In current algorithms, neighbour information is adopted to resist the effect of image artefacts. However, when the image is contaminated with high-level noise, current algorithms also perform poor. Recently, non-local information is introduced to improve the quality of segmentation results, in which pixel relevance between pixels is crucial. In this paper, pixel relevance is measured based on Mahalanobis distance. More specifically, we consider the distribution of different samples and relevance interference between samples in the procedure of computing pixel relevance. Then, a new algorithm based on the novel pixel relevance is proposed, where non-local information can be incorporated into fuzzy clustering for image segmentation. The new algorithm can improve the robustness of corresponding algorithms greatly. Experiments on different noisy images show that the proposed algorithm can retrieve better results than conventional algorithms.\",\"PeriodicalId\":164016,\"journal\":{\"name\":\"Int. J. Inf. Comput. Secur.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJICS.2018.10012573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2018.10012573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像分割就是将给定的图像分割成不同的区域。本质上,图像分割的过程是根据检索到的特征将像素聚类成不同的组。然而,给定图像中的伪影会使特征受到污染,导致当前分割算法的性能不佳。因此,如何降低图像伪影的影响是图像处理中的一个热点问题。目前的算法采用邻域信息来抵抗图像伪影的影响。然而,当图像被高水平噪声污染时,现有算法的性能也很差。近年来,为了提高分割结果的质量,引入了非局部信息,其中像素间的相关性至关重要。本文基于马氏距离测量像素相关性。更具体地说,我们在计算像素相关性的过程中考虑了不同样本的分布和样本之间的相关干扰。然后,提出了一种新的基于像素相关性的算法,将非局部信息纳入模糊聚类中进行图像分割。新算法可以大大提高相应算法的鲁棒性。在不同噪声图像上的实验表明,该算法的检索效果优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved pixel relevance based on Mahalanobis distance for image segmentation
Image segmentation is to partition one given image into different regions. In essence, the procedure of image segmentation is to cluster the pixels into different groups according to the retrieved features. However, artefacts in the given images make the features be contaminated, resulting in poor performance of current segmentation algorithms. Therefore, how to reduce the effect of image artefacts is one hot topic in image processing. In current algorithms, neighbour information is adopted to resist the effect of image artefacts. However, when the image is contaminated with high-level noise, current algorithms also perform poor. Recently, non-local information is introduced to improve the quality of segmentation results, in which pixel relevance between pixels is crucial. In this paper, pixel relevance is measured based on Mahalanobis distance. More specifically, we consider the distribution of different samples and relevance interference between samples in the procedure of computing pixel relevance. Then, a new algorithm based on the novel pixel relevance is proposed, where non-local information can be incorporated into fuzzy clustering for image segmentation. The new algorithm can improve the robustness of corresponding algorithms greatly. Experiments on different noisy images show that the proposed algorithm can retrieve better results than conventional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信