基于fpga的可穿戴计算SIFT实现

Attila Fejér, Z. Nagy, J. Benois-Pineau, P. Szolgay, A. Rugy, J. Domenger
{"title":"基于fpga的可穿戴计算SIFT实现","authors":"Attila Fejér, Z. Nagy, J. Benois-Pineau, P. Szolgay, A. Rugy, J. Domenger","doi":"10.1109/DDECS.2019.8724653","DOIUrl":null,"url":null,"abstract":"The article describes the first steps to achieve control over a robotic or prosthetic arm based on analysis of visual environment acquired in real-time by video cameras on glasses and on the prosthesis. One of the main goals of the research is to develop a wearable, portable, lightweight, and low power consumption device for visual scene analysis. This paper will discuss the critical steps of its implementation on an FPGA board. We implemented some time-consuming parts of the SFT algorithm needed for the analysis in C/C++ language on TUL PYNQ-Z2 FPGA board. This implementation allows for a low power consumption of the programmable logic part of the system. The obtained value is 0. 274W. Processing capacity is 96.45 images per second on a small wearable size device which allow for the real-time implementation of the whole analysis in the future.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA-based SIFT implementation for wearable computing\",\"authors\":\"Attila Fejér, Z. Nagy, J. Benois-Pineau, P. Szolgay, A. Rugy, J. Domenger\",\"doi\":\"10.1109/DDECS.2019.8724653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes the first steps to achieve control over a robotic or prosthetic arm based on analysis of visual environment acquired in real-time by video cameras on glasses and on the prosthesis. One of the main goals of the research is to develop a wearable, portable, lightweight, and low power consumption device for visual scene analysis. This paper will discuss the critical steps of its implementation on an FPGA board. We implemented some time-consuming parts of the SFT algorithm needed for the analysis in C/C++ language on TUL PYNQ-Z2 FPGA board. This implementation allows for a low power consumption of the programmable logic part of the system. The obtained value is 0. 274W. Processing capacity is 96.45 images per second on a small wearable size device which allow for the real-time implementation of the whole analysis in the future.\",\"PeriodicalId\":197053,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2019.8724653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了通过眼镜和义肢上的摄像机实时获取的视觉环境分析来实现对机器人或义肢的控制的第一步。研究的主要目标之一是开发一种可穿戴、便携、轻便、低功耗的视觉场景分析设备。本文将讨论其在FPGA板上实现的关键步骤。我们在TUL PYNQ-Z2 FPGA板上用C/ c++语言实现了分析所需的一些耗时的SFT算法。这种实现允许系统的可编程逻辑部分的低功耗。得到的值为0。274 w。在一个小的可穿戴设备上,每秒处理能力为96.45张图像,允许在未来实时实施整个分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based SIFT implementation for wearable computing
The article describes the first steps to achieve control over a robotic or prosthetic arm based on analysis of visual environment acquired in real-time by video cameras on glasses and on the prosthesis. One of the main goals of the research is to develop a wearable, portable, lightweight, and low power consumption device for visual scene analysis. This paper will discuss the critical steps of its implementation on an FPGA board. We implemented some time-consuming parts of the SFT algorithm needed for the analysis in C/C++ language on TUL PYNQ-Z2 FPGA board. This implementation allows for a low power consumption of the programmable logic part of the system. The obtained value is 0. 274W. Processing capacity is 96.45 images per second on a small wearable size device which allow for the real-time implementation of the whole analysis in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信