通过边缘适应多尺度变换的图像紧凑表示

A. Cohen, Basarab Matei
{"title":"通过边缘适应多尺度变换的图像紧凑表示","authors":"A. Cohen, Basarab Matei","doi":"10.1109/ICIP.2001.958938","DOIUrl":null,"url":null,"abstract":"We introduce new multiscale representations for images which incorporate a specific geometric treatment of edges. The associated transforms are inherently nonlinear and nontensor product, in contrast to classical wavelet basis decompositions over which they exhibit visual improvement in terms of compression. This approach can be viewed as a bridge between edge detection and the nonlinear multiresolution representations of Ami Harten (see Journal of Applied Numerical Mathematics, vol.12, p.153-93, 1993).","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Compact representation of images by edge adapted multiscale transforms\",\"authors\":\"A. Cohen, Basarab Matei\",\"doi\":\"10.1109/ICIP.2001.958938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new multiscale representations for images which incorporate a specific geometric treatment of edges. The associated transforms are inherently nonlinear and nontensor product, in contrast to classical wavelet basis decompositions over which they exhibit visual improvement in terms of compression. This approach can be viewed as a bridge between edge detection and the nonlinear multiresolution representations of Ami Harten (see Journal of Applied Numerical Mathematics, vol.12, p.153-93, 1993).\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

我们为图像引入了新的多尺度表示,其中包含了边缘的特定几何处理。相关变换本质上是非线性和非张量积,与经典小波基分解相比,它们在压缩方面表现出明显的改进。这种方法可以看作是边缘检测和Ami Harten的非线性多分辨率表示之间的桥梁(见Journal of Applied Numerical Mathematics, vol.12, p.153-93, 1993)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact representation of images by edge adapted multiscale transforms
We introduce new multiscale representations for images which incorporate a specific geometric treatment of edges. The associated transforms are inherently nonlinear and nontensor product, in contrast to classical wavelet basis decompositions over which they exhibit visual improvement in terms of compression. This approach can be viewed as a bridge between edge detection and the nonlinear multiresolution representations of Ami Harten (see Journal of Applied Numerical Mathematics, vol.12, p.153-93, 1993).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信