实例可约性与魏氏度

Andrej Bauer
{"title":"实例可约性与魏氏度","authors":"Andrej Bauer","doi":"10.46298/lmcs-18(3:20)2022","DOIUrl":null,"url":null,"abstract":"We identify a notion of reducibility between predicates, called instance\nreducibility, which commonly appears in reverse constructive mathematics. The\nnotion can be generally used to compare and classify various principles studied\nin reverse constructive mathematics (formal Church's thesis, Brouwer's\nContinuity principle and Fan theorem, Excluded middle, Limited principle,\nFunction choice, Markov's principle, etc.). We show that the instance degrees\nform a frame, i.e., a complete lattice in which finite infima distribute over\nset-indexed suprema. They turn out to be equivalent to the frame of upper sets\nof truth values, ordered by the reverse Smyth partial order. We study the\noverall structure of the lattice: the subobject classifier embeds into the\nlattice in two different ways, one monotone and the other antimonotone, and the\n$\\lnot\\lnot$-dense degrees coincide with those that are reducible to the degree\nof Excluded middle.\n We give an explicit formulation of instance degrees in a relative\nrealizability topos, and call these extended Weihrauch degrees, because in\nKleene-Vesley realizability the $\\lnot\\lnot$-dense modest instance degrees\ncorrespond precisely to Weihrauch degrees. The extended degrees improve the\nstructure of Weihrauch degrees by equipping them with computable infima and\nsuprema, an implication, the ability to control access to parameters and\ncomputation of results, and by generally widening the scope of Weihrauch\nreducibility.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Instance reducibility and Weihrauch degrees\",\"authors\":\"Andrej Bauer\",\"doi\":\"10.46298/lmcs-18(3:20)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify a notion of reducibility between predicates, called instance\\nreducibility, which commonly appears in reverse constructive mathematics. The\\nnotion can be generally used to compare and classify various principles studied\\nin reverse constructive mathematics (formal Church's thesis, Brouwer's\\nContinuity principle and Fan theorem, Excluded middle, Limited principle,\\nFunction choice, Markov's principle, etc.). We show that the instance degrees\\nform a frame, i.e., a complete lattice in which finite infima distribute over\\nset-indexed suprema. They turn out to be equivalent to the frame of upper sets\\nof truth values, ordered by the reverse Smyth partial order. We study the\\noverall structure of the lattice: the subobject classifier embeds into the\\nlattice in two different ways, one monotone and the other antimonotone, and the\\n$\\\\lnot\\\\lnot$-dense degrees coincide with those that are reducible to the degree\\nof Excluded middle.\\n We give an explicit formulation of instance degrees in a relative\\nrealizability topos, and call these extended Weihrauch degrees, because in\\nKleene-Vesley realizability the $\\\\lnot\\\\lnot$-dense modest instance degrees\\ncorrespond precisely to Weihrauch degrees. The extended degrees improve the\\nstructure of Weihrauch degrees by equipping them with computable infima and\\nsuprema, an implication, the ability to control access to parameters and\\ncomputation of results, and by generally widening the scope of Weihrauch\\nreducibility.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(3:20)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(3:20)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们确定了谓词之间的可约性概念,称为实例可育性,它通常出现在反向构造数学中。这个概念一般可以用来比较和分类反构造数学中所研究的各种原理(formal Church’s thesis, browwer’s continuity principle and Fan theorem, Excluded middle, Limited principle,Function choice, Markov’s principle等)。我们证明了实例度形成了一个框架,即有限正无穷分布于覆盖索引上的完备格。它们等价于真值上集的框架,由逆Smyth偏序排序。我们研究了格的整体结构:子对象分类器以两种不同的方式嵌入到格中,一种是单调的,另一种是反单调的,并且密度与那些可约为排除中间度的密度重合。我们给一个显式的实例度relativerealizability主题,并调用这些扩展Weihrauch度,因为inKleene-Vesley现实性\ lnot \ lnot密集美元温和实例degreescorrespond精确Weihrauch度。扩展度改进了魏氏度的结构,使其具有可计算的无限和上界、隐含、控制参数获取和结果计算的能力,并普遍扩大了魏氏约化的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instance reducibility and Weihrauch degrees
We identify a notion of reducibility between predicates, called instance reducibility, which commonly appears in reverse constructive mathematics. The notion can be generally used to compare and classify various principles studied in reverse constructive mathematics (formal Church's thesis, Brouwer's Continuity principle and Fan theorem, Excluded middle, Limited principle, Function choice, Markov's principle, etc.). We show that the instance degrees form a frame, i.e., a complete lattice in which finite infima distribute over set-indexed suprema. They turn out to be equivalent to the frame of upper sets of truth values, ordered by the reverse Smyth partial order. We study the overall structure of the lattice: the subobject classifier embeds into the lattice in two different ways, one monotone and the other antimonotone, and the $\lnot\lnot$-dense degrees coincide with those that are reducible to the degree of Excluded middle. We give an explicit formulation of instance degrees in a relative realizability topos, and call these extended Weihrauch degrees, because in Kleene-Vesley realizability the $\lnot\lnot$-dense modest instance degrees correspond precisely to Weihrauch degrees. The extended degrees improve the structure of Weihrauch degrees by equipping them with computable infima and suprema, an implication, the ability to control access to parameters and computation of results, and by generally widening the scope of Weihrauch reducibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信