支持向量机器学习图像检索

Lei Zhang, Fuzong Lin, Bo Zhang
{"title":"支持向量机器学习图像检索","authors":"Lei Zhang, Fuzong Lin, Bo Zhang","doi":"10.1109/ICIP.2001.958595","DOIUrl":null,"url":null,"abstract":"A novel method of relevance feedback is presented based on support vector machine learning in the content-based image retrieval system. A SVM classifier can be learned from training data of relevance images and irrelevance images marked by users. Using the classifier, the system can retrieve more images relevant to the query in the database efficiently. Experiments were carried out on a large-size database of 9918 images. It shows that the interactive learning and retrieval process can find correct images increasingly. It also shows the generalization ability of SVM under the condition of limited training samples.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"305","resultStr":"{\"title\":\"Support vector machine learning for image retrieval\",\"authors\":\"Lei Zhang, Fuzong Lin, Bo Zhang\",\"doi\":\"10.1109/ICIP.2001.958595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method of relevance feedback is presented based on support vector machine learning in the content-based image retrieval system. A SVM classifier can be learned from training data of relevance images and irrelevance images marked by users. Using the classifier, the system can retrieve more images relevant to the query in the database efficiently. Experiments were carried out on a large-size database of 9918 images. It shows that the interactive learning and retrieval process can find correct images increasingly. It also shows the generalization ability of SVM under the condition of limited training samples.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"305\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 305

摘要

在基于内容的图像检索系统中,提出了一种基于支持向量机器学习的相关反馈方法。SVM分类器可以从用户标记的相关图像和不相关图像的训练数据中学习。使用分类器,系统可以从数据库中检索到更多与查询相关的图像。实验在9918张大型图像数据库上进行。结果表明,交互式学习和检索过程可以越来越多地找到正确的图像。同时也展示了支持向量机在有限训练样本条件下的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vector machine learning for image retrieval
A novel method of relevance feedback is presented based on support vector machine learning in the content-based image retrieval system. A SVM classifier can be learned from training data of relevance images and irrelevance images marked by users. Using the classifier, the system can retrieve more images relevant to the query in the database efficiently. Experiments were carried out on a large-size database of 9918 images. It shows that the interactive learning and retrieval process can find correct images increasingly. It also shows the generalization ability of SVM under the condition of limited training samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信