P2EST:用于评估时空查询的并行化哲学

Xiling Sun, Anan Yaagoub, Goce Trajcevski, P. Scheuermann, Hao Chen, Abhinav Kachhwaha
{"title":"P2EST:用于评估时空查询的并行化哲学","authors":"Xiling Sun, Anan Yaagoub, Goce Trajcevski, P. Scheuermann, Hao Chen, Abhinav Kachhwaha","doi":"10.1145/2534921.2534929","DOIUrl":null,"url":null,"abstract":"This work considers the impact of different contexts when attempting to exploit parallelization approaches for processing continuous spatio-temporal queries. More specifically, we are interested in various trade-off aspects that may arise due to differences of the computing environments like, for example, multicore vs. cloud. Algorithmic solutions for parallel processing of spatio-temporal queries cater to splitting the load among units - be it based on the data or the query (or both) - relying to a bigger or lesser degree on a certain set of features of a given environment. We postulate that incorporating the service-features should be coupled with the algorithms/heuristics for processing particular queries, in addition to the volume of the data. We present the current version of the implementation of our P2EST system and analyze the execution of different heuristics for parallel processing of spatio-temporal range queries.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"P2EST: parallelization philosophies for evaluating spatio-temporal queries\",\"authors\":\"Xiling Sun, Anan Yaagoub, Goce Trajcevski, P. Scheuermann, Hao Chen, Abhinav Kachhwaha\",\"doi\":\"10.1145/2534921.2534929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers the impact of different contexts when attempting to exploit parallelization approaches for processing continuous spatio-temporal queries. More specifically, we are interested in various trade-off aspects that may arise due to differences of the computing environments like, for example, multicore vs. cloud. Algorithmic solutions for parallel processing of spatio-temporal queries cater to splitting the load among units - be it based on the data or the query (or both) - relying to a bigger or lesser degree on a certain set of features of a given environment. We postulate that incorporating the service-features should be coupled with the algorithms/heuristics for processing particular queries, in addition to the volume of the data. We present the current version of the implementation of our P2EST system and analyze the execution of different heuristics for parallel processing of spatio-temporal range queries.\",\"PeriodicalId\":416086,\"journal\":{\"name\":\"International Workshop on Analytics for Big Geospatial Data\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Analytics for Big Geospatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534921.2534929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534921.2534929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在尝试利用并行化方法处理连续的时空查询时,这项工作考虑了不同上下文的影响。更具体地说,我们感兴趣的是由于计算环境(例如,多核与云)的差异而可能出现的各种权衡方面。用于并行处理时空查询的算法解决方案可以在单元之间分配负载——无论是基于数据还是基于查询(或两者兼而有之)——或多或少地依赖于给定环境的一组特定特征。我们假设,除了数据量之外,合并服务特性应该与处理特定查询的算法/启发式相结合。我们展示了我们的P2EST系统的当前实现版本,并分析了不同的启发式并行处理时空范围查询的执行情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P2EST: parallelization philosophies for evaluating spatio-temporal queries
This work considers the impact of different contexts when attempting to exploit parallelization approaches for processing continuous spatio-temporal queries. More specifically, we are interested in various trade-off aspects that may arise due to differences of the computing environments like, for example, multicore vs. cloud. Algorithmic solutions for parallel processing of spatio-temporal queries cater to splitting the load among units - be it based on the data or the query (or both) - relying to a bigger or lesser degree on a certain set of features of a given environment. We postulate that incorporating the service-features should be coupled with the algorithms/heuristics for processing particular queries, in addition to the volume of the data. We present the current version of the implementation of our P2EST system and analyze the execution of different heuristics for parallel processing of spatio-temporal range queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信