模式识别中像素强度的统计依赖性

Ievgen Smielik, K. Kuhnert
{"title":"模式识别中像素强度的统计依赖性","authors":"Ievgen Smielik, K. Kuhnert","doi":"10.1109/ICIT.2013.6505840","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an algorithm for speeding up object recognition by reducing the amount of pixels taken into account when processing images. We show that some statistically stable regions can be found on an image. Taking just one pixel from each region preserves the most of information of the image. We employ linear dependency between pixel intensity values to organize neighbouring pixels in groups. Bayesian classification was chosen to prove suitability. We present the results that show computation speed increase without significant performance losses.","PeriodicalId":192784,"journal":{"name":"2013 IEEE International Conference on Industrial Technology (ICIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Statistical dependence of pixel intensities for pattern recognition\",\"authors\":\"Ievgen Smielik, K. Kuhnert\",\"doi\":\"10.1109/ICIT.2013.6505840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe an algorithm for speeding up object recognition by reducing the amount of pixels taken into account when processing images. We show that some statistically stable regions can be found on an image. Taking just one pixel from each region preserves the most of information of the image. We employ linear dependency between pixel intensity values to organize neighbouring pixels in groups. Bayesian classification was chosen to prove suitability. We present the results that show computation speed increase without significant performance losses.\",\"PeriodicalId\":192784,\"journal\":{\"name\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2013.6505840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2013.6505840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们描述了一种算法,通过减少处理图像时要考虑的像素量来加速目标识别。我们证明了在图像上可以找到一些统计稳定的区域。从每个区域取一个像素可以保留图像的大部分信息。我们使用像素强度值之间的线性相关性来组织相邻的像素组。选择贝叶斯分类来证明适用性。我们给出的结果表明,在没有显著性能损失的情况下,计算速度有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical dependence of pixel intensities for pattern recognition
In this paper, we describe an algorithm for speeding up object recognition by reducing the amount of pixels taken into account when processing images. We show that some statistically stable regions can be found on an image. Taking just one pixel from each region preserves the most of information of the image. We employ linear dependency between pixel intensity values to organize neighbouring pixels in groups. Bayesian classification was chosen to prove suitability. We present the results that show computation speed increase without significant performance losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信