聪明的贝塔变得聪明:机构和散户投资者的综合风险因素

Andreas Johansson, Riccardo Sabbatucci, A. Tamoni
{"title":"聪明的贝塔变得聪明:机构和散户投资者的综合风险因素","authors":"Andreas Johansson, Riccardo Sabbatucci, A. Tamoni","doi":"10.2139/ssrn.3594064","DOIUrl":null,"url":null,"abstract":"We construct synthetic, tradable risk factors using optimal combinations of large and liquid mutual funds and ETFs. We find that investors are not able to harvest the unconditional factor risk premia, although the synthetic portfolios of institutional investors outperform those of retail investors. We also propose a methodology to identify market funds. Lastly, we show that (i) daily flows to naive smart beta strategies are more predictable than those to our synthetic strategies, and (ii) our synthetic HML outperforms a naive one based on fund names. Our results have implications for the evaluations of portfolio managers and cross-sectional return anomalies.","PeriodicalId":377322,"journal":{"name":"Investments eJournal","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Beta Made Smart: Synthetic Risk Factors for Institutional and Retail Investors\",\"authors\":\"Andreas Johansson, Riccardo Sabbatucci, A. Tamoni\",\"doi\":\"10.2139/ssrn.3594064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct synthetic, tradable risk factors using optimal combinations of large and liquid mutual funds and ETFs. We find that investors are not able to harvest the unconditional factor risk premia, although the synthetic portfolios of institutional investors outperform those of retail investors. We also propose a methodology to identify market funds. Lastly, we show that (i) daily flows to naive smart beta strategies are more predictable than those to our synthetic strategies, and (ii) our synthetic HML outperforms a naive one based on fund names. Our results have implications for the evaluations of portfolio managers and cross-sectional return anomalies.\",\"PeriodicalId\":377322,\"journal\":{\"name\":\"Investments eJournal\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investments eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3594064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investments eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3594064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们使用大型和流动性的共同基金和etf的最佳组合来构建合成的、可交易的风险因素。我们发现,尽管机构投资者的综合投资组合表现优于散户投资者,但投资者无法获得无条件的要素风险溢价。我们还提出了一种识别市场基金的方法。最后,我们表明(i)朴素智能贝塔策略的日流量比我们的合成策略更可预测,(ii)我们的合成html优于基于基金名称的朴素策略。我们的结果对投资组合经理的评估和横截面收益异常具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Beta Made Smart: Synthetic Risk Factors for Institutional and Retail Investors
We construct synthetic, tradable risk factors using optimal combinations of large and liquid mutual funds and ETFs. We find that investors are not able to harvest the unconditional factor risk premia, although the synthetic portfolios of institutional investors outperform those of retail investors. We also propose a methodology to identify market funds. Lastly, we show that (i) daily flows to naive smart beta strategies are more predictable than those to our synthetic strategies, and (ii) our synthetic HML outperforms a naive one based on fund names. Our results have implications for the evaluations of portfolio managers and cross-sectional return anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信