{"title":"基于RIP的条件下支持恢复与A* OMP在存在噪声","authors":"Haifeng Li, Wengu Chen","doi":"10.1049/iet-spr.2019.0478","DOIUrl":null,"url":null,"abstract":"A* orthogonal matching pursuit (A* OMP) aims at combination of best-first tree search with the OMP algorithm for the compressed sensing problem. In this study, the authors present a new analysis for the A* OMP algorithm using the restricted isometry property (RIP). The results show that if the sampling matrix A satisfies the RIP with δ K ⋆ < B / ( K + B ) ( K ⋆ = max { 2 K , K + B } ), then under some constraints on SNR, A* OMP accurately recovers the support of any K-sparse signal x from the samples y = A x + e , where B is the number of child paths for each candidate in the algorithm. In addition, the proposed condition is an optimal condition that guarantees the success of A* OMP in the noise-free case.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RIP based condition for support recovery with A* OMP in the presence of noise\",\"authors\":\"Haifeng Li, Wengu Chen\",\"doi\":\"10.1049/iet-spr.2019.0478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A* orthogonal matching pursuit (A* OMP) aims at combination of best-first tree search with the OMP algorithm for the compressed sensing problem. In this study, the authors present a new analysis for the A* OMP algorithm using the restricted isometry property (RIP). The results show that if the sampling matrix A satisfies the RIP with δ K ⋆ < B / ( K + B ) ( K ⋆ = max { 2 K , K + B } ), then under some constraints on SNR, A* OMP accurately recovers the support of any K-sparse signal x from the samples y = A x + e , where B is the number of child paths for each candidate in the algorithm. In addition, the proposed condition is an optimal condition that guarantees the success of A* OMP in the noise-free case.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2019.0478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2019.0478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
A*正交匹配追踪(A* OMP)是将最优优先树搜索与OMP算法相结合来解决压缩感知问题。在本研究中,作者利用受限等距特性(RIP)对a * OMP算法进行了新的分析。结果表明,如果采样矩阵满足RIP和δK⋆< B / (K + B) (K⋆= max {2 K, K + B}),然后在某些约束在信噪比,A * OMP准确恢复的支持任何K-sparse信号从样本y = x + e、B是孩子路径的数量为每个候选人的算法。此外,所提出的条件是保证无噪声情况下A* OMP成功的最优条件。
RIP based condition for support recovery with A* OMP in the presence of noise
A* orthogonal matching pursuit (A* OMP) aims at combination of best-first tree search with the OMP algorithm for the compressed sensing problem. In this study, the authors present a new analysis for the A* OMP algorithm using the restricted isometry property (RIP). The results show that if the sampling matrix A satisfies the RIP with δ K ⋆ < B / ( K + B ) ( K ⋆ = max { 2 K , K + B } ), then under some constraints on SNR, A* OMP accurately recovers the support of any K-sparse signal x from the samples y = A x + e , where B is the number of child paths for each candidate in the algorithm. In addition, the proposed condition is an optimal condition that guarantees the success of A* OMP in the noise-free case.