Adam Z. Foshie, Charles Rizzo, Hritom Das, Chaohui Zheng, J. Plank, G. Rose
{"title":"控制应用中基于峰值的可重构神经处理器架构的基准比较","authors":"Adam Z. Foshie, Charles Rizzo, Hritom Das, Chaohui Zheng, J. Plank, G. Rose","doi":"10.1145/3526241.3530381","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is a leading option for non von-Neumann computing architectures. With it, neural networks are developed that derive architectural inspiration from how the brain operates with neurons, synapses, and spikes. These networks are often implemented in either software or hardware based neuroprocessors designed to handle specific tasks efficiently. Even if implemented in hardware, software emulation is instrumental in determining the worthwhile features and capabilities of the architecture. In this work two novel neuroprocessors are introduced: the software-based RISP neuroprocessor, and the RAVENS hardware neuroprocessor. Several benchmark tests using control applications are performed with each neuroprocessor configured in various ways to evaluate their comparative performance and training properties.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Benchmark Comparisons of Spike-based Reconfigurable Neuroprocessor Architectures for Control Applications\",\"authors\":\"Adam Z. Foshie, Charles Rizzo, Hritom Das, Chaohui Zheng, J. Plank, G. Rose\",\"doi\":\"10.1145/3526241.3530381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing is a leading option for non von-Neumann computing architectures. With it, neural networks are developed that derive architectural inspiration from how the brain operates with neurons, synapses, and spikes. These networks are often implemented in either software or hardware based neuroprocessors designed to handle specific tasks efficiently. Even if implemented in hardware, software emulation is instrumental in determining the worthwhile features and capabilities of the architecture. In this work two novel neuroprocessors are introduced: the software-based RISP neuroprocessor, and the RAVENS hardware neuroprocessor. Several benchmark tests using control applications are performed with each neuroprocessor configured in various ways to evaluate their comparative performance and training properties.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benchmark Comparisons of Spike-based Reconfigurable Neuroprocessor Architectures for Control Applications
Neuromorphic computing is a leading option for non von-Neumann computing architectures. With it, neural networks are developed that derive architectural inspiration from how the brain operates with neurons, synapses, and spikes. These networks are often implemented in either software or hardware based neuroprocessors designed to handle specific tasks efficiently. Even if implemented in hardware, software emulation is instrumental in determining the worthwhile features and capabilities of the architecture. In this work two novel neuroprocessors are introduced: the software-based RISP neuroprocessor, and the RAVENS hardware neuroprocessor. Several benchmark tests using control applications are performed with each neuroprocessor configured in various ways to evaluate their comparative performance and training properties.