用预测语义编码可视化RNN状态

Lindsey Sawatzky, S. Bergner, F. Popowich
{"title":"用预测语义编码可视化RNN状态","authors":"Lindsey Sawatzky, S. Bergner, F. Popowich","doi":"10.1109/VISUAL.2019.8933744","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks are an effective and prevalent tool used to model sequential data such as natural language text. However, their deep nature and massive number of parameters pose a challenge for those intending to study precisely how they work. We present a visual technique that gives a high level intuition behind the semantics of the hidden states within Recurrent Neural Networks. This semantic encoding allows for hidden states to be compared throughout the model independent of their internal details. The proposed technique is displayed in a proof of concept visualization tool which is demonstrated to visualize the natural language processing task of language modelling.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Visualizing RNN States with Predictive Semantic Encodings\",\"authors\":\"Lindsey Sawatzky, S. Bergner, F. Popowich\",\"doi\":\"10.1109/VISUAL.2019.8933744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent Neural Networks are an effective and prevalent tool used to model sequential data such as natural language text. However, their deep nature and massive number of parameters pose a challenge for those intending to study precisely how they work. We present a visual technique that gives a high level intuition behind the semantics of the hidden states within Recurrent Neural Networks. This semantic encoding allows for hidden states to be compared throughout the model independent of their internal details. The proposed technique is displayed in a proof of concept visualization tool which is demonstrated to visualize the natural language processing task of language modelling.\",\"PeriodicalId\":192801,\"journal\":{\"name\":\"2019 IEEE Visualization Conference (VIS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2019.8933744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

递归神经网络是一种有效且流行的工具,用于对序列数据(如自然语言文本)进行建模。然而,它们的深层性质和大量参数对那些打算精确研究它们如何工作的人构成了挑战。我们提出了一种视觉技术,它在递归神经网络中隐藏状态的语义背后提供了高层次的直觉。这种语义编码允许对整个模型中的隐藏状态进行独立于其内部细节的比较。提出的技术以概念证明可视化工具的形式展示,该工具演示了可视化语言建模的自然语言处理任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing RNN States with Predictive Semantic Encodings
Recurrent Neural Networks are an effective and prevalent tool used to model sequential data such as natural language text. However, their deep nature and massive number of parameters pose a challenge for those intending to study precisely how they work. We present a visual technique that gives a high level intuition behind the semantics of the hidden states within Recurrent Neural Networks. This semantic encoding allows for hidden states to be compared throughout the model independent of their internal details. The proposed technique is displayed in a proof of concept visualization tool which is demonstrated to visualize the natural language processing task of language modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信