{"title":"基于进化算法的车臂机器人系统逆运动学多目标优化","authors":"H. Rodríguez, Ilka Banfield","doi":"10.13180/clawar.2018.10-12.09.40","DOIUrl":null,"url":null,"abstract":"This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.","PeriodicalId":145851,"journal":{"name":"Robotics Transforming the Future","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse kinematic multiobjective optimization for a vehicle-arm robot system using evolutionary algorithms\",\"authors\":\"H. Rodríguez, Ilka Banfield\",\"doi\":\"10.13180/clawar.2018.10-12.09.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.\",\"PeriodicalId\":145851,\"journal\":{\"name\":\"Robotics Transforming the Future\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics Transforming the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13180/clawar.2018.10-12.09.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics Transforming the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13180/clawar.2018.10-12.09.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse kinematic multiobjective optimization for a vehicle-arm robot system using evolutionary algorithms
This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.