基于进化算法的车臂机器人系统逆运动学多目标优化

H. Rodríguez, Ilka Banfield
{"title":"基于进化算法的车臂机器人系统逆运动学多目标优化","authors":"H. Rodríguez, Ilka Banfield","doi":"10.13180/clawar.2018.10-12.09.40","DOIUrl":null,"url":null,"abstract":"This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.","PeriodicalId":145851,"journal":{"name":"Robotics Transforming the Future","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse kinematic multiobjective optimization for a vehicle-arm robot system using evolutionary algorithms\",\"authors\":\"H. Rodríguez, Ilka Banfield\",\"doi\":\"10.13180/clawar.2018.10-12.09.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.\",\"PeriodicalId\":145851,\"journal\":{\"name\":\"Robotics Transforming the Future\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics Transforming the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13180/clawar.2018.10-12.09.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics Transforming the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13180/clawar.2018.10-12.09.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了用多目标进化算法求解车臂冗余机器人的运动学逆问题。采用简化的五自由度模型对问题进行仿真,并在水下条件下合理选择目标函数。此外,我们还介绍了用于求解逆运动学问题的最重要技术,最后重点介绍了具有非线性约束的非支配、排序、精英MOEA的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse kinematic multiobjective optimization for a vehicle-arm robot system using evolutionary algorithms
This work is aimed at discussing the solution of the inverse kinematic problem using Multi- Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A simplified 5 DoF model was used to simulate the problem and the objective functions were properly selected assuming underwater operation. In addition, we present a review of the most important techniques used for solving the inverse kinematic problem, focusing at the end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信