实时多目标轨迹优化

Ilya Gukov, Alvis Logins
{"title":"实时多目标轨迹优化","authors":"Ilya Gukov, Alvis Logins","doi":"10.1109/IRC55401.2022.00075","DOIUrl":null,"url":null,"abstract":"In this article, a method is presented for generating a trajectory through predetermined waypoints, with jerk and duration as two conflicting objectives. The method uses a Seq2Seq neural network model to approximate Pareto efficient solutions. It trains on a set of random trajectories optimized by Sequential Quadratic Programming (SQP) with a novel initialization strategy. We consider an example pick-and-place task for a robot manipulator. Based on several metrics, we show that our model generalizes over diverse paths, outperforms a genetic algorithm, SQP with naive initialization, and scaled time-optimal methods. At the same time, our model features a negligible GPU-accelerated inference time of 5ms that demonstrates applicability of the approach for real-time control.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Multi-Objective Trajectory Optimization\",\"authors\":\"Ilya Gukov, Alvis Logins\",\"doi\":\"10.1109/IRC55401.2022.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a method is presented for generating a trajectory through predetermined waypoints, with jerk and duration as two conflicting objectives. The method uses a Seq2Seq neural network model to approximate Pareto efficient solutions. It trains on a set of random trajectories optimized by Sequential Quadratic Programming (SQP) with a novel initialization strategy. We consider an example pick-and-place task for a robot manipulator. Based on several metrics, we show that our model generalizes over diverse paths, outperforms a genetic algorithm, SQP with naive initialization, and scaled time-optimal methods. At the same time, our model features a negligible GPU-accelerated inference time of 5ms that demonstrates applicability of the approach for real-time control.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,提出了一种通过预定路径点生成轨迹的方法,其中推力和持续时间作为两个相互冲突的目标。该方法采用Seq2Seq神经网络模型逼近Pareto有效解。该算法采用一种新的初始化策略,在序列二次规划优化的随机轨迹集上进行训练。我们考虑一个机器人操作器的拾取和放置任务示例。基于几个指标,我们证明了我们的模型可以在不同的路径上进行泛化,优于遗传算法、朴素初始化的SQP和缩放时间最优方法。同时,我们的模型具有可忽略不计的gpu加速推理时间(5ms),这证明了该方法对实时控制的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Multi-Objective Trajectory Optimization
In this article, a method is presented for generating a trajectory through predetermined waypoints, with jerk and duration as two conflicting objectives. The method uses a Seq2Seq neural network model to approximate Pareto efficient solutions. It trains on a set of random trajectories optimized by Sequential Quadratic Programming (SQP) with a novel initialization strategy. We consider an example pick-and-place task for a robot manipulator. Based on several metrics, we show that our model generalizes over diverse paths, outperforms a genetic algorithm, SQP with naive initialization, and scaled time-optimal methods. At the same time, our model features a negligible GPU-accelerated inference time of 5ms that demonstrates applicability of the approach for real-time control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信