将词嵌入纳入跨语言主题建模

Chia-Hsuan Chang, San-Yih Hwang, Tou-Hsiang Xui
{"title":"将词嵌入纳入跨语言主题建模","authors":"Chia-Hsuan Chang, San-Yih Hwang, Tou-Hsiang Xui","doi":"10.1109/BigDataCongress.2018.00010","DOIUrl":null,"url":null,"abstract":"In this paper, we address the cross-lingual topic modeling, which is an important technique that enables global enterprises to detect and compare topic trends across global markets. Previous works in cross-lingual topic modeling have proposed methods that utilize parallel or comparable corpus in constructing the polylingual topic model. However, parallel or comparable corpus in many cases are not available. In this research, we incorporate techniques of mapping cross-lingual word space and the topic modeling (LDA) and propose two methods: Translated Corpus with LDA (TC-LDA) and Post Match LDA (PM-LDA). The cross-lingual word space mapping allows us to compare words of different languages, and LDA enables us to group words into topics. Both TC-LDA and PM-LDA do not need parallel or comparable corpus and hence have more applicable domains. The effectiveness of both methods is evaluated using UM-Corpus and WS-353. Our evaluation results indicate that both methods are able to identify similar documents written in different language. In addition, PM-LDA is shown to achieve better performance than TC-LDA, especially when document length is short.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incorporating Word Embedding into Cross-Lingual Topic Modeling\",\"authors\":\"Chia-Hsuan Chang, San-Yih Hwang, Tou-Hsiang Xui\",\"doi\":\"10.1109/BigDataCongress.2018.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the cross-lingual topic modeling, which is an important technique that enables global enterprises to detect and compare topic trends across global markets. Previous works in cross-lingual topic modeling have proposed methods that utilize parallel or comparable corpus in constructing the polylingual topic model. However, parallel or comparable corpus in many cases are not available. In this research, we incorporate techniques of mapping cross-lingual word space and the topic modeling (LDA) and propose two methods: Translated Corpus with LDA (TC-LDA) and Post Match LDA (PM-LDA). The cross-lingual word space mapping allows us to compare words of different languages, and LDA enables us to group words into topics. Both TC-LDA and PM-LDA do not need parallel or comparable corpus and hence have more applicable domains. The effectiveness of both methods is evaluated using UM-Corpus and WS-353. Our evaluation results indicate that both methods are able to identify similar documents written in different language. In addition, PM-LDA is shown to achieve better performance than TC-LDA, especially when document length is short.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们讨论了跨语言主题建模,这是一项重要的技术,使全球企业能够检测和比较全球市场的主题趋势。以往的跨语言主题建模工作提出了利用平行或可比语料库构建多语言主题模型的方法。然而,在许多情况下,并行或可比语料库是不可用的。在本研究中,我们将跨语言词空间映射技术和主题建模(LDA)技术结合起来,提出了两种方法:带LDA的翻译语料库(TC-LDA)和后匹配LDA (PM-LDA)。跨语言的词空间映射使我们能够比较不同语言的词,LDA使我们能够将词分组到主题中。TC-LDA和PM-LDA都不需要平行或可比的语料库,因此有更多的适用领域。使用UM-Corpus和WS-353对两种方法的有效性进行了评估。我们的评估结果表明,这两种方法都能够识别用不同语言编写的类似文档。此外,PM-LDA的性能优于TC-LDA,特别是在文档长度较短的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Word Embedding into Cross-Lingual Topic Modeling
In this paper, we address the cross-lingual topic modeling, which is an important technique that enables global enterprises to detect and compare topic trends across global markets. Previous works in cross-lingual topic modeling have proposed methods that utilize parallel or comparable corpus in constructing the polylingual topic model. However, parallel or comparable corpus in many cases are not available. In this research, we incorporate techniques of mapping cross-lingual word space and the topic modeling (LDA) and propose two methods: Translated Corpus with LDA (TC-LDA) and Post Match LDA (PM-LDA). The cross-lingual word space mapping allows us to compare words of different languages, and LDA enables us to group words into topics. Both TC-LDA and PM-LDA do not need parallel or comparable corpus and hence have more applicable domains. The effectiveness of both methods is evaluated using UM-Corpus and WS-353. Our evaluation results indicate that both methods are able to identify similar documents written in different language. In addition, PM-LDA is shown to achieve better performance than TC-LDA, especially when document length is short.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信