可逼近的集

R. Beigel, M. Kummer, F. Stephan
{"title":"可逼近的集","authors":"R. Beigel, M. Kummer, F. Stephan","doi":"10.1109/SCT.1994.315822","DOIUrl":null,"url":null,"abstract":"Much structural work on NP-complete sets has exploited SAT's d-self-reducibility. We exploit the additional fact that SAT is a d-cylinder to show that NP-complete sets are p-superterse unless P=NP. In fact, every set that is NP-hard under polynomial-time n/sup o(1/)-tt reductions is p-superterse unless P=NP. In particular no p-selective set is NP-hard under polynomial-time n/sup o(1/)-tt reductions unless P=NP. In addition, no easily countable set is NP-hard under Turing reductions unless P=NP. Self-reducibility does not seem to suffice for our main result: in a relativized world, we construct a d-self-reducible set in NP-P that is polynomial-time 2-tt reducible to a p-selective set.<<ETX>>","PeriodicalId":386782,"journal":{"name":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Approximable sets\",\"authors\":\"R. Beigel, M. Kummer, F. Stephan\",\"doi\":\"10.1109/SCT.1994.315822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much structural work on NP-complete sets has exploited SAT's d-self-reducibility. We exploit the additional fact that SAT is a d-cylinder to show that NP-complete sets are p-superterse unless P=NP. In fact, every set that is NP-hard under polynomial-time n/sup o(1/)-tt reductions is p-superterse unless P=NP. In particular no p-selective set is NP-hard under polynomial-time n/sup o(1/)-tt reductions unless P=NP. In addition, no easily countable set is NP-hard under Turing reductions unless P=NP. Self-reducibility does not seem to suffice for our main result: in a relativized world, we construct a d-self-reducible set in NP-P that is polynomial-time 2-tt reducible to a p-selective set.<<ETX>>\",\"PeriodicalId\":386782,\"journal\":{\"name\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1994.315822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1994.315822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

许多关于np完全集的结构工作都利用了SAT的d自约性。我们利用SAT是d柱体的附加事实来证明NP完备集是P超精简的,除非P=NP。事实上,在多项式时间n/sup o(1/)-tt约简下,每一个NP-hard的集合都是P-超精简的,除非P=NP。特别地,除非P=NP,否则在多项式时间n/sup o(1/)-tt约简下,没有P选择集是NP困难的。此外,在图灵约简下,除非P=NP,否则没有易可数集是NP-hard的。自约性似乎不足以满足我们的主要结果:在一个相对化的世界中,我们构造了NP-P中的一个d自约集,它是多项式时间2-tt可约为p选择集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximable sets
Much structural work on NP-complete sets has exploited SAT's d-self-reducibility. We exploit the additional fact that SAT is a d-cylinder to show that NP-complete sets are p-superterse unless P=NP. In fact, every set that is NP-hard under polynomial-time n/sup o(1/)-tt reductions is p-superterse unless P=NP. In particular no p-selective set is NP-hard under polynomial-time n/sup o(1/)-tt reductions unless P=NP. In addition, no easily countable set is NP-hard under Turing reductions unless P=NP. Self-reducibility does not seem to suffice for our main result: in a relativized world, we construct a d-self-reducible set in NP-P that is polynomial-time 2-tt reducible to a p-selective set.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信