海面非线性艾里波脉冲

I. Shugan, S. Kuznetsov, Y. Saprykina, Yang-Yih Chen
{"title":"海面非线性艾里波脉冲","authors":"I. Shugan, S. Kuznetsov, Y. Saprykina, Yang-Yih Chen","doi":"10.1115/omae2019-96298","DOIUrl":null,"url":null,"abstract":"\n The possibility of self-acceleration of the water-wave pulse with a permanent envelope in the form of the nonlinear Airy function during its long propagation in deep water is experimentally and theoretically analyzed. This wave packet has amazing properties — accelerates without any external force, and preserves shape in a dispersive medium. The inverted Airy envelope wave function can propagate at velocity that is faster than the group velocity. We experimentally study the behavior of Airy water-wave pulses in a super-tank and long scaled propagation, to investigate its main properties, nonlinear effects and stability. Theoretical modeling analysis is based on the nonlinear Schrodinger equation. We investigate the scope of applicability, feasibility and stability conditions of nonlinear Airy wave trains in the deep water conditions; defining regimes of self-acceleration of the main pulse, immutability shape of Airy envelope; assessing the impact of nonlinearity and dissipation on the propagation of Airy waves. We analyzed the influence of the initial pulse characteristics on self-acceleration of wave packet and the stability of the envelope form. The anticipated results allow extending the physical understanding of the evolution of nonlinear dispersive waves in a wide range of initial conditions and at different spatial and temporal scales, from both theoretical and experimental points of view. Steep waves start to become an unstable, we observe spectrum widening and downshifting. Wave propagation is accompained by the intensive wave breaking and the generation of water-wave solitons.","PeriodicalId":314553,"journal":{"name":"Volume 3: Structures, Safety, and Reliability","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Airy Wave Pulses on the Sea Surface\",\"authors\":\"I. Shugan, S. Kuznetsov, Y. Saprykina, Yang-Yih Chen\",\"doi\":\"10.1115/omae2019-96298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The possibility of self-acceleration of the water-wave pulse with a permanent envelope in the form of the nonlinear Airy function during its long propagation in deep water is experimentally and theoretically analyzed. This wave packet has amazing properties — accelerates without any external force, and preserves shape in a dispersive medium. The inverted Airy envelope wave function can propagate at velocity that is faster than the group velocity. We experimentally study the behavior of Airy water-wave pulses in a super-tank and long scaled propagation, to investigate its main properties, nonlinear effects and stability. Theoretical modeling analysis is based on the nonlinear Schrodinger equation. We investigate the scope of applicability, feasibility and stability conditions of nonlinear Airy wave trains in the deep water conditions; defining regimes of self-acceleration of the main pulse, immutability shape of Airy envelope; assessing the impact of nonlinearity and dissipation on the propagation of Airy waves. We analyzed the influence of the initial pulse characteristics on self-acceleration of wave packet and the stability of the envelope form. The anticipated results allow extending the physical understanding of the evolution of nonlinear dispersive waves in a wide range of initial conditions and at different spatial and temporal scales, from both theoretical and experimental points of view. Steep waves start to become an unstable, we observe spectrum widening and downshifting. Wave propagation is accompained by the intensive wave breaking and the generation of water-wave solitons.\",\"PeriodicalId\":314553,\"journal\":{\"name\":\"Volume 3: Structures, Safety, and Reliability\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Structures, Safety, and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验和理论分析了具有非线性Airy函数形式的永久包络水波脉冲在深水中长距离传播过程中自加速的可能性。这种波包具有惊人的特性——在没有任何外力的情况下加速,并在色散介质中保持形状。逆艾里包络波函数可以以比群速度更快的速度传播。通过实验研究了艾里水波脉冲在超槽中的传播特性和长尺度传播特性,探讨了艾里水波脉冲的主要特性、非线性效应和稳定性。理论建模分析基于非线性薛定谔方程。研究了非线性艾里波列在深水条件下的适用范围、可行性和稳定性条件;定义主脉冲的自加速状态,艾里包络的不变性;评估非线性和耗散对艾里波传播的影响。分析了初始脉冲特性对波包自加速和包络形式稳定性的影响。从理论和实验的角度来看,预期的结果可以扩展对非线性色散波在大范围初始条件和不同时空尺度下演化的物理理解。陡波开始变得不稳定,我们观察到频谱变宽和降频。波的传播伴随着强烈的破波和水波孤子的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Airy Wave Pulses on the Sea Surface
The possibility of self-acceleration of the water-wave pulse with a permanent envelope in the form of the nonlinear Airy function during its long propagation in deep water is experimentally and theoretically analyzed. This wave packet has amazing properties — accelerates without any external force, and preserves shape in a dispersive medium. The inverted Airy envelope wave function can propagate at velocity that is faster than the group velocity. We experimentally study the behavior of Airy water-wave pulses in a super-tank and long scaled propagation, to investigate its main properties, nonlinear effects and stability. Theoretical modeling analysis is based on the nonlinear Schrodinger equation. We investigate the scope of applicability, feasibility and stability conditions of nonlinear Airy wave trains in the deep water conditions; defining regimes of self-acceleration of the main pulse, immutability shape of Airy envelope; assessing the impact of nonlinearity and dissipation on the propagation of Airy waves. We analyzed the influence of the initial pulse characteristics on self-acceleration of wave packet and the stability of the envelope form. The anticipated results allow extending the physical understanding of the evolution of nonlinear dispersive waves in a wide range of initial conditions and at different spatial and temporal scales, from both theoretical and experimental points of view. Steep waves start to become an unstable, we observe spectrum widening and downshifting. Wave propagation is accompained by the intensive wave breaking and the generation of water-wave solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信