基于双串联忆阻器反向传播算法的片上硬件训练

H. Vo
{"title":"基于双串联忆阻器反向传播算法的片上硬件训练","authors":"H. Vo","doi":"10.1109/CCE.2018.8465750","DOIUrl":null,"url":null,"abstract":"This study proposes an architecture using two series memristor circuits as synapses to install the weights of the artificial neural network. Two series memristor circuit is similar to half-bridge circuit so here only to create positive weights in the range [0;1]. The use of two memristor circuit will decrease 50% the number of memristor. By proposed memristor circuit, we exploit back-propagation algorithm to train a three-bit odd parity on-chip hardware instead of software implementation.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Training On-chip Hardware with Two Series Memristor Based Backpropagation Algorithm\",\"authors\":\"H. Vo\",\"doi\":\"10.1109/CCE.2018.8465750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an architecture using two series memristor circuits as synapses to install the weights of the artificial neural network. Two series memristor circuit is similar to half-bridge circuit so here only to create positive weights in the range [0;1]. The use of two memristor circuit will decrease 50% the number of memristor. By proposed memristor circuit, we exploit back-propagation algorithm to train a three-bit odd parity on-chip hardware instead of software implementation.\",\"PeriodicalId\":118716,\"journal\":{\"name\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCE.2018.8465750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究提出了一种使用两个串联忆阻电路作为突触来安装人工神经网络权值的架构。两串忆阻电路类似于半桥电路,所以这里只产生在[0;1]范围内的正权值。采用双忆阻电路将使忆阻器数量减少50%。通过所提出的忆阻电路,我们利用反向传播算法来训练一个3位奇偶校验的片上硬件,而不是软件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training On-chip Hardware with Two Series Memristor Based Backpropagation Algorithm
This study proposes an architecture using two series memristor circuits as synapses to install the weights of the artificial neural network. Two series memristor circuit is similar to half-bridge circuit so here only to create positive weights in the range [0;1]. The use of two memristor circuit will decrease 50% the number of memristor. By proposed memristor circuit, we exploit back-propagation algorithm to train a three-bit odd parity on-chip hardware instead of software implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信