认知无线电网络中频谱感知的变分贝叶斯学习技术

O. Awe, S. M. Naqvi, S. Lambotharan
{"title":"认知无线电网络中频谱感知的变分贝叶斯学习技术","authors":"O. Awe, S. M. Naqvi, S. Lambotharan","doi":"10.1109/GlobalSIP.2014.7032309","DOIUrl":null,"url":null,"abstract":"The successful implementation of dynamic spectrum access in cognitive radio networks requires that the secondary user has an autonomous knowledge of the true status of the licensed user activities. This paper investigates and proposes a robust blind spectrum sensing technique that is based on the variational Bayesian learning for Gaussian mixture model framework for use in multi-antenna cognitive radio networks. The results obtained from the proposed scheme, averaged over 1000 Monte-Carlo simulations show that a probability of detection greater than 90% is achievable at the signal - to - noise ratio (SJVR) of -18 dB when the false alarm probability is kept at less than 10%. An interesting feature of the proposed scheme is its ability to determine the number of active licensed users.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Variational Bayesian learning technique for spectrum sensing in cognitive radio networks\",\"authors\":\"O. Awe, S. M. Naqvi, S. Lambotharan\",\"doi\":\"10.1109/GlobalSIP.2014.7032309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The successful implementation of dynamic spectrum access in cognitive radio networks requires that the secondary user has an autonomous knowledge of the true status of the licensed user activities. This paper investigates and proposes a robust blind spectrum sensing technique that is based on the variational Bayesian learning for Gaussian mixture model framework for use in multi-antenna cognitive radio networks. The results obtained from the proposed scheme, averaged over 1000 Monte-Carlo simulations show that a probability of detection greater than 90% is achievable at the signal - to - noise ratio (SJVR) of -18 dB when the false alarm probability is kept at less than 10%. An interesting feature of the proposed scheme is its ability to determine the number of active licensed users.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

认知无线网络中动态频谱接入的成功实现要求二级用户对被许可用户活动的真实状态有自主的了解。本文研究并提出了一种基于变分贝叶斯学习的高斯混合模型框架的鲁棒盲频谱感知技术,用于多天线认知无线电网络。经过1000多次蒙特卡罗模拟,结果表明,在虚警概率小于10%的情况下,在信噪比(SJVR)为-18 dB的情况下,检测概率大于90%。该方案的一个有趣特性是它能够确定活动许可用户的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Bayesian learning technique for spectrum sensing in cognitive radio networks
The successful implementation of dynamic spectrum access in cognitive radio networks requires that the secondary user has an autonomous knowledge of the true status of the licensed user activities. This paper investigates and proposes a robust blind spectrum sensing technique that is based on the variational Bayesian learning for Gaussian mixture model framework for use in multi-antenna cognitive radio networks. The results obtained from the proposed scheme, averaged over 1000 Monte-Carlo simulations show that a probability of detection greater than 90% is achievable at the signal - to - noise ratio (SJVR) of -18 dB when the false alarm probability is kept at less than 10%. An interesting feature of the proposed scheme is its ability to determine the number of active licensed users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信