{"title":"眨眼引起的眼睑分流的眼电模拟","authors":"Nathaniel Barbara, T. Camilleri, K. Camilleri","doi":"10.1145/3448018.3457994","DOIUrl":null,"url":null,"abstract":"Besides the traditional regression model-based techniques to estimate the gaze angles (GAs) from electrooculography (EOG) signals, more recent works have investigated the use of a battery model for GA estimation. This is a white-box, explicit and physically-driven model which relates the monopolar EOG potential to the electrode-cornea and electrode-retina distances. In this work, this model is augmented to cater for the blink-induced EOG signal characteristics, by modelling the eyelid-induced shunting effect during blinks. Specifically, a channel-dependent parameter representing the extent to which the amount of eyelid opening affects the particular EOG channel is introduced. A method to estimate these parameters is also proposed and the proposed model is validated by incorporating it in a Kalman filter to estimate the eyelid opening during blinks. The results obtained have demonstrated that the proposed model can accurately represent the blink-related eyelid-induced shunting.","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling of Blink-Related Eyelid-Induced Shunting on the Electrooculogram\",\"authors\":\"Nathaniel Barbara, T. Camilleri, K. Camilleri\",\"doi\":\"10.1145/3448018.3457994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Besides the traditional regression model-based techniques to estimate the gaze angles (GAs) from electrooculography (EOG) signals, more recent works have investigated the use of a battery model for GA estimation. This is a white-box, explicit and physically-driven model which relates the monopolar EOG potential to the electrode-cornea and electrode-retina distances. In this work, this model is augmented to cater for the blink-induced EOG signal characteristics, by modelling the eyelid-induced shunting effect during blinks. Specifically, a channel-dependent parameter representing the extent to which the amount of eyelid opening affects the particular EOG channel is introduced. A method to estimate these parameters is also proposed and the proposed model is validated by incorporating it in a Kalman filter to estimate the eyelid opening during blinks. The results obtained have demonstrated that the proposed model can accurately represent the blink-related eyelid-induced shunting.\",\"PeriodicalId\":226088,\"journal\":{\"name\":\"ACM Symposium on Eye Tracking Research and Applications\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448018.3457994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448018.3457994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of Blink-Related Eyelid-Induced Shunting on the Electrooculogram
Besides the traditional regression model-based techniques to estimate the gaze angles (GAs) from electrooculography (EOG) signals, more recent works have investigated the use of a battery model for GA estimation. This is a white-box, explicit and physically-driven model which relates the monopolar EOG potential to the electrode-cornea and electrode-retina distances. In this work, this model is augmented to cater for the blink-induced EOG signal characteristics, by modelling the eyelid-induced shunting effect during blinks. Specifically, a channel-dependent parameter representing the extent to which the amount of eyelid opening affects the particular EOG channel is introduced. A method to estimate these parameters is also proposed and the proposed model is validated by incorporating it in a Kalman filter to estimate the eyelid opening during blinks. The results obtained have demonstrated that the proposed model can accurately represent the blink-related eyelid-induced shunting.