分析数据集群对业务的支持

Y. Zhao, Chi-Hung Chi, Chen Ding
{"title":"分析数据集群对业务的支持","authors":"Y. Zhao, Chi-Hung Chi, Chen Ding","doi":"10.1109/ICSESS.2011.5982246","DOIUrl":null,"url":null,"abstract":"With the current direction of service and cloud, unique characteristics of online software services impose new algorithmic requirements and cause differential applicability/ suitability of different clustering approaches in service analytics. In this paper, we investigate the efficiency and effectiveness of current important data clustering techniques, partitioning and hierarchical, for service analytics. It is our goal that results from this paper will serve as requirement guidelines for developing and deploying future intelligence services.","PeriodicalId":108533,"journal":{"name":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of data clustering support for service\",\"authors\":\"Y. Zhao, Chi-Hung Chi, Chen Ding\",\"doi\":\"10.1109/ICSESS.2011.5982246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the current direction of service and cloud, unique characteristics of online software services impose new algorithmic requirements and cause differential applicability/ suitability of different clustering approaches in service analytics. In this paper, we investigate the efficiency and effectiveness of current important data clustering techniques, partitioning and hierarchical, for service analytics. It is our goal that results from this paper will serve as requirement guidelines for developing and deploying future intelligence services.\",\"PeriodicalId\":108533,\"journal\":{\"name\":\"2011 IEEE 2nd International Conference on Software Engineering and Service Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 2nd International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2011.5982246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2011.5982246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着当前服务和云的发展方向,在线软件服务的独特特性对算法提出了新的要求,并导致不同聚类方法在服务分析中的适用性/适宜性存在差异。在本文中,我们研究了当前重要的数据聚类技术,分区和分层,服务分析的效率和有效性。我们的目标是,本文的结果将作为开发和部署未来情报服务的需求指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of data clustering support for service
With the current direction of service and cloud, unique characteristics of online software services impose new algorithmic requirements and cause differential applicability/ suitability of different clustering approaches in service analytics. In this paper, we investigate the efficiency and effectiveness of current important data clustering techniques, partitioning and hierarchical, for service analytics. It is our goal that results from this paper will serve as requirement guidelines for developing and deploying future intelligence services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信