用于增强现实的可扩展对象中心跟踪

U. Neumann, Jun Park
{"title":"用于增强现实的可扩展对象中心跟踪","authors":"U. Neumann, Jun Park","doi":"10.1109/VRAIS.1998.658482","DOIUrl":null,"url":null,"abstract":"Presents a novel object-centric tracking architecture for presenting augmented reality media in spatial relationships to objects, regardless of the objects' positions or motions in the world. The advance this system provides over previous object-centric tracking approaches is the ability to sense and integrate new features into its tracking database, thereby extending the tracking region automatically. This lazy evaluation of the structure-from-motion problem uses images obtained from a single calibrated moving camera and applies recursive filtering to identify and estimate the 3D positions of new features. We evaluate the performance of two filters; a classic extended Kalman filter (EKF) and a filter based on a recursive average of covariances (RAC). Implementation issues and results are discussed in conclusion.","PeriodicalId":105542,"journal":{"name":"Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Extendible object-centric tracking for augmented reality\",\"authors\":\"U. Neumann, Jun Park\",\"doi\":\"10.1109/VRAIS.1998.658482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a novel object-centric tracking architecture for presenting augmented reality media in spatial relationships to objects, regardless of the objects' positions or motions in the world. The advance this system provides over previous object-centric tracking approaches is the ability to sense and integrate new features into its tracking database, thereby extending the tracking region automatically. This lazy evaluation of the structure-from-motion problem uses images obtained from a single calibrated moving camera and applies recursive filtering to identify and estimate the 3D positions of new features. We evaluate the performance of two filters; a classic extended Kalman filter (EKF) and a filter based on a recursive average of covariances (RAC). Implementation issues and results are discussed in conclusion.\",\"PeriodicalId\":105542,\"journal\":{\"name\":\"Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRAIS.1998.658482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRAIS.1998.658482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

提出了一种新的以对象为中心的跟踪架构,用于在与对象的空间关系中呈现增强现实媒体,而不管对象在世界中的位置或运动。与以前的以对象为中心的跟踪方法相比,该系统的进步在于能够感知并将新特征集成到其跟踪数据库中,从而自动扩展跟踪区域。这种对运动结构问题的惰性评估使用从单个校准的运动摄像机获得的图像,并应用递归滤波来识别和估计新特征的3D位置。我们评估了两个滤波器的性能;一个经典的扩展卡尔曼滤波器(EKF)和一个基于协方差递归平均(RAC)的滤波器。最后讨论了实施问题和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extendible object-centric tracking for augmented reality
Presents a novel object-centric tracking architecture for presenting augmented reality media in spatial relationships to objects, regardless of the objects' positions or motions in the world. The advance this system provides over previous object-centric tracking approaches is the ability to sense and integrate new features into its tracking database, thereby extending the tracking region automatically. This lazy evaluation of the structure-from-motion problem uses images obtained from a single calibrated moving camera and applies recursive filtering to identify and estimate the 3D positions of new features. We evaluate the performance of two filters; a classic extended Kalman filter (EKF) and a filter based on a recursive average of covariances (RAC). Implementation issues and results are discussed in conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信