使用深度学习技术识别年龄和性别

Margi Patel, Upendra Singh
{"title":"使用深度学习技术识别年龄和性别","authors":"Margi Patel, Upendra Singh","doi":"10.1109/ICSMDI57622.2023.00052","DOIUrl":null,"url":null,"abstract":"Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age and Gender Recognition using Deep Learning Technique\",\"authors\":\"Margi Patel, Upendra Singh\",\"doi\":\"10.1109/ICSMDI57622.2023.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.\",\"PeriodicalId\":373017,\"journal\":{\"name\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMDI57622.2023.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

性别分类很受欢迎,因为它包含了男性和女性社会活动的信息。人脸使得很难得出性别歧视的视觉效果。性别分类是基于外貌的。由于性别包含了丰富的社会信息,自动性别分类很受欢迎。分类在许多行业中变得越来越重要。在一个保守的社会中,性别分类可以在某些情况下使用。识别性别类型对于防止极端分子进入安全地点至关重要,尤其是在敏感地区。女性专用的火车车厢、针对性别的营销和寺庙也采用了类似的技术。生物识别技术从面部图片中争论性别分类。传统方法将手工制作的特征分为全局和局部。这些性别识别系统需要学科知识,而且效率低下。人类的性别识别很容易,但机器却很难。我们列出了许多性别分类预处理方法,如对比度和亮度归一化。为了创建性别和年龄分类框架,深度信念网络采用移位过滤响应来识别特征。建议的模型在基准数据集上达到98%和99%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age and Gender Recognition using Deep Learning Technique
Gender classification is popular because it includes information about male and female social activities. Faces make it difficult to derive gender-discriminating visuals. Gender classification is based on looks. Automatic gender classification is popular because genders include rich social information. Classification has grown increasingly important in many industries. In a conservative society, gender classification can be usedin certain contexts. Identifying gender type is crucial to keeping extremists out of safe locations, especially in sensitive areas. A similar technique is utilized in female-only railway carriages, gender-specific marketing, and temples. Biometrics debates gender classification from facial pictures. Traditional ways categorize hand-crafted features globally and locally. These gender-identification systems need subject knowledge and are ineffective. Human gender identification is easy, but machines struggle. We listed numerous gender classification pre-processing approaches, such as contrast and brightness normalization. To create a gender and age classification framework Deep Belief Networks employs Shifted Filter Responses to identify features. The suggested model achieves 98% and 99% accuracy on the benchmark dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信