某些随机捕食者-猎物模型的研究

N. Du, N. H. Dang, G. Yin
{"title":"某些随机捕食者-猎物模型的研究","authors":"N. Du, N. H. Dang, G. Yin","doi":"10.1137/1.9781611974072.56","DOIUrl":null,"url":null,"abstract":"In this paper, we provide sufficient conditions for the permanence and ergodicity of a stochastic predator-prey model with Beddington-DeAngelis functional response. These sufficient conditions are sharp and close to the necessary conditions as well. In addition to the nondegenerate diffusion, degenerate cases are also treated. In the degenerate case, our results characterize the support of the associated unique invariant probability measure. Convergence in total variation of the transition probability to the invariant measures is given. We also consider a stochastic model with regime-switching. Our results are demonstrated by several examples.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Certain Stochastic Predator-Prey Models\",\"authors\":\"N. Du, N. H. Dang, G. Yin\",\"doi\":\"10.1137/1.9781611974072.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide sufficient conditions for the permanence and ergodicity of a stochastic predator-prey model with Beddington-DeAngelis functional response. These sufficient conditions are sharp and close to the necessary conditions as well. In addition to the nondegenerate diffusion, degenerate cases are also treated. In the degenerate case, our results characterize the support of the associated unique invariant probability measure. Convergence in total variation of the transition probability to the invariant measures is given. We also consider a stochastic model with regime-switching. Our results are demonstrated by several examples.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有Beddington-DeAngelis函数响应的随机捕食-食饵模型的持久性和遍历性的充分条件。这些充分条件是尖锐的,也接近于必要条件。除非退化扩散外,还治疗退化病例。在退化情况下,我们的结果表征了相关唯一不变概率测度的支持度。给出了转移概率的总变分对不变测度的收敛性。我们还考虑了一个具有状态切换的随机模型。通过几个例子证明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Certain Stochastic Predator-Prey Models
In this paper, we provide sufficient conditions for the permanence and ergodicity of a stochastic predator-prey model with Beddington-DeAngelis functional response. These sufficient conditions are sharp and close to the necessary conditions as well. In addition to the nondegenerate diffusion, degenerate cases are also treated. In the degenerate case, our results characterize the support of the associated unique invariant probability measure. Convergence in total variation of the transition probability to the invariant measures is given. We also consider a stochastic model with regime-switching. Our results are demonstrated by several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信