Q-YOLOP:量化意识,你只看一次全景驾驶感知

Chi-Chih Chang, Wei-Cheng Lin, Peide Wang, Shengtao Yu, Yunrong Lu, Kuan-Cheng Lin, Kaiyang Wu
{"title":"Q-YOLOP:量化意识,你只看一次全景驾驶感知","authors":"Chi-Chih Chang, Wei-Cheng Lin, Peide Wang, Shengtao Yu, Yunrong Lu, Kuan-Cheng Lin, Kaiyang Wu","doi":"10.1109/ICMEW59549.2023.00015","DOIUrl":null,"url":null,"abstract":"In this work, we present an efficient and quantization-aware panoptic driving perception model (Q-YOLOP) for object detection, drivable area segmentation, and lane line segmentation, in the context of autonomous driving. Our model employs the Efficient Layer Aggregation Network (ELAN) as its backbone and task-specific heads for each task. We employ a four-stage training process that includes pretraining on the BDD100K dataset, finetuning on both the BDD100K and iVS datasets, and quantization-aware training (QAT) on BDD100K. During the training process, we use powerful data augmentation techniques, such as random perspective and mosaic, and train the model on a combination of the BDD100K and iVS datasets. Both strategies enhance the model's generalization capabilities. The proposed model achieves state-of-the-art performance with an mAP@0.5 of 0.622 for object detection and an mIoU of 0.612 for segmentation, while maintaining low computational and memory requirements.","PeriodicalId":111482,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Q-YOLOP: Quantization-Aware You Only Look Once for Panoptic Driving Perception\",\"authors\":\"Chi-Chih Chang, Wei-Cheng Lin, Peide Wang, Shengtao Yu, Yunrong Lu, Kuan-Cheng Lin, Kaiyang Wu\",\"doi\":\"10.1109/ICMEW59549.2023.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an efficient and quantization-aware panoptic driving perception model (Q-YOLOP) for object detection, drivable area segmentation, and lane line segmentation, in the context of autonomous driving. Our model employs the Efficient Layer Aggregation Network (ELAN) as its backbone and task-specific heads for each task. We employ a four-stage training process that includes pretraining on the BDD100K dataset, finetuning on both the BDD100K and iVS datasets, and quantization-aware training (QAT) on BDD100K. During the training process, we use powerful data augmentation techniques, such as random perspective and mosaic, and train the model on a combination of the BDD100K and iVS datasets. Both strategies enhance the model's generalization capabilities. The proposed model achieves state-of-the-art performance with an mAP@0.5 of 0.622 for object detection and an mIoU of 0.612 for segmentation, while maintaining low computational and memory requirements.\",\"PeriodicalId\":111482,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW59549.2023.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW59549.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这项工作中,我们提出了一种高效的、量化感知的全光驾驶感知模型(Q-YOLOP),用于自动驾驶背景下的目标检测、可驾驶区域分割和车道线分割。我们的模型采用高效层聚合网络(ELAN)作为其主干,并为每个任务指定特定的头。我们采用了一个四阶段的训练过程,包括对BDD100K数据集的预训练,对BDD100K和iVS数据集的微调,以及对BDD100K的量化感知训练(QAT)。在训练过程中,我们使用了强大的数据增强技术,如随机视角和马赛克,并在BDD100K和iVS数据集的组合上训练模型。这两种策略都增强了模型的泛化能力。提出的模型实现了最先进的性能,目标检测的mAP@0.5为0.622,分割的mIoU为0.612,同时保持了较低的计算和内存需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-YOLOP: Quantization-Aware You Only Look Once for Panoptic Driving Perception
In this work, we present an efficient and quantization-aware panoptic driving perception model (Q-YOLOP) for object detection, drivable area segmentation, and lane line segmentation, in the context of autonomous driving. Our model employs the Efficient Layer Aggregation Network (ELAN) as its backbone and task-specific heads for each task. We employ a four-stage training process that includes pretraining on the BDD100K dataset, finetuning on both the BDD100K and iVS datasets, and quantization-aware training (QAT) on BDD100K. During the training process, we use powerful data augmentation techniques, such as random perspective and mosaic, and train the model on a combination of the BDD100K and iVS datasets. Both strategies enhance the model's generalization capabilities. The proposed model achieves state-of-the-art performance with an mAP@0.5 of 0.622 for object detection and an mIoU of 0.612 for segmentation, while maintaining low computational and memory requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信