解决不平衡数据集的数据复杂性:C4.5预处理的初步研究

J. Luengo, Alberto Fernández, S. García, F. Herrera
{"title":"解决不平衡数据集的数据复杂性:C4.5预处理的初步研究","authors":"J. Luengo, Alberto Fernández, S. García, F. Herrera","doi":"10.1109/ISDA.2009.233","DOIUrl":null,"url":null,"abstract":"In this work we analyse the behaviour of the C4.5 classification method with respect to a bunch of imbalanced data-sets. We consider the use of two metrics of data complexity known as “maximum Fishers discriminant ratio” and “nonlinearity of 1NN classifier”, to analyse the effect of preprocessing (oversampling in this case) in order to deal with the imbalance problem. In order to do that, we analyse C4.5 over a wide range of imbalanced data-sets built from real data, and try to extract behaviour patterns from the results. We obtain rules that describe both good or bad behaviours of C4.5 in the case of using the original data-sets (absence of preprocessing) and when applying preprocessing. These rules allow us to determine the effect of the use of preprocessing and to predict the response of C4.5 to preprocessing from the data-set’s complexity metrics prior to its application, and then establish when the preprocessing would be useful to.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Addressing Data-Complexity for Imbalanced Data-Sets: A Preliminary Study on the Use of Preprocessing for C4.5\",\"authors\":\"J. Luengo, Alberto Fernández, S. García, F. Herrera\",\"doi\":\"10.1109/ISDA.2009.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we analyse the behaviour of the C4.5 classification method with respect to a bunch of imbalanced data-sets. We consider the use of two metrics of data complexity known as “maximum Fishers discriminant ratio” and “nonlinearity of 1NN classifier”, to analyse the effect of preprocessing (oversampling in this case) in order to deal with the imbalance problem. In order to do that, we analyse C4.5 over a wide range of imbalanced data-sets built from real data, and try to extract behaviour patterns from the results. We obtain rules that describe both good or bad behaviours of C4.5 in the case of using the original data-sets (absence of preprocessing) and when applying preprocessing. These rules allow us to determine the effect of the use of preprocessing and to predict the response of C4.5 to preprocessing from the data-set’s complexity metrics prior to its application, and then establish when the preprocessing would be useful to.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在这项工作中,我们分析了C4.5分类方法对一堆不平衡数据集的行为。我们考虑使用两个数据复杂性指标,即“最大费雪判别比”和“1NN分类器的非线性”,来分析预处理(在这种情况下是过采样)的效果,以处理不平衡问题。为了做到这一点,我们在广泛的不平衡数据集上分析C4.5,这些数据集是由真实数据构建的,并试图从结果中提取行为模式。我们得到了在使用原始数据集(没有预处理)和应用预处理的情况下描述C4.5的好或坏行为的规则。这些规则使我们能够确定使用预处理的效果,并在应用前根据数据集的复杂性指标预测C4.5对预处理的响应,然后确定预处理何时有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing Data-Complexity for Imbalanced Data-Sets: A Preliminary Study on the Use of Preprocessing for C4.5
In this work we analyse the behaviour of the C4.5 classification method with respect to a bunch of imbalanced data-sets. We consider the use of two metrics of data complexity known as “maximum Fishers discriminant ratio” and “nonlinearity of 1NN classifier”, to analyse the effect of preprocessing (oversampling in this case) in order to deal with the imbalance problem. In order to do that, we analyse C4.5 over a wide range of imbalanced data-sets built from real data, and try to extract behaviour patterns from the results. We obtain rules that describe both good or bad behaviours of C4.5 in the case of using the original data-sets (absence of preprocessing) and when applying preprocessing. These rules allow us to determine the effect of the use of preprocessing and to predict the response of C4.5 to preprocessing from the data-set’s complexity metrics prior to its application, and then establish when the preprocessing would be useful to.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信