高性能嵌入式应用中粒子群优化算法两种FPGA实现的比较

Daniel M. Muñoz Arboleda, C. Llanos, L. Coelho, M. Ayala-Rincón
{"title":"高性能嵌入式应用中粒子群优化算法两种FPGA实现的比较","authors":"Daniel M. Muñoz Arboleda, C. Llanos, L. Coelho, M. Ayala-Rincón","doi":"10.1109/BICTA.2010.5645256","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) algorithms have been proposed to solve engineering problems that require to find an optimal point of operation. There are several embedded applications which requires to solve online optimization problems with a high performance. However, the PSO suffers on large execution times, and this fact becomes evident when using Reduced Instruction Set Computer (RISC) microprocessors in which the operational frequencies are low in comparison with the high operational frequencies of traditional personal computers (PCs). This paper compares two hardware implementations of the parallel PSO algorithm using an efficient floating-point arithmetic which perform computations with large dynamic range and high precision. The full-parallel and the partially-parallel PSO architectures allow the parallel capabilities of the PSO to be exploited in order to decrease the running time. Three well-known benchmark test functions have been used to validate the hardware architectures and a comparison in terms of cost in logic area, quality of the solution and performance is reported. In addition, a comparison of the execution time between the hardware and two C-code software implementations, based on a Intel Core Duo at 1.6GHz and a embedded Microblaze microprocessor at 50MHz, are presented.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Comparison between two FPGA implementations of the Particle Swarm Optimization algorithm for high-performance embedded applications\",\"authors\":\"Daniel M. Muñoz Arboleda, C. Llanos, L. Coelho, M. Ayala-Rincón\",\"doi\":\"10.1109/BICTA.2010.5645256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle Swarm Optimization (PSO) algorithms have been proposed to solve engineering problems that require to find an optimal point of operation. There are several embedded applications which requires to solve online optimization problems with a high performance. However, the PSO suffers on large execution times, and this fact becomes evident when using Reduced Instruction Set Computer (RISC) microprocessors in which the operational frequencies are low in comparison with the high operational frequencies of traditional personal computers (PCs). This paper compares two hardware implementations of the parallel PSO algorithm using an efficient floating-point arithmetic which perform computations with large dynamic range and high precision. The full-parallel and the partially-parallel PSO architectures allow the parallel capabilities of the PSO to be exploited in order to decrease the running time. Three well-known benchmark test functions have been used to validate the hardware architectures and a comparison in terms of cost in logic area, quality of the solution and performance is reported. In addition, a comparison of the execution time between the hardware and two C-code software implementations, based on a Intel Core Duo at 1.6GHz and a embedded Microblaze microprocessor at 50MHz, are presented.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

粒子群优化算法(PSO)被用于解决需要找到最优运行点的工程问题。有一些嵌入式应用程序需要高性能地解决在线优化问题。然而,PSO的执行时间长,当使用精简指令集计算机(RISC)微处理器时,与传统个人计算机(pc)的高工作频率相比,其工作频率较低,这一事实变得明显。本文比较了并行粒子群算法的两种硬件实现,采用了一种高效的浮点算法,实现了大动态范围和高精度的计算。全并行和部分并行PSO体系结构允许利用PSO的并行功能来减少运行时间。采用了三种著名的基准测试函数对硬件架构进行了验证,并从逻辑领域的成本、解决方案的质量和性能方面进行了比较。此外,还比较了基于1.6GHz Intel酷睿双核和50MHz嵌入式Microblaze微处理器的硬件和两种c代码软件实现的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between two FPGA implementations of the Particle Swarm Optimization algorithm for high-performance embedded applications
Particle Swarm Optimization (PSO) algorithms have been proposed to solve engineering problems that require to find an optimal point of operation. There are several embedded applications which requires to solve online optimization problems with a high performance. However, the PSO suffers on large execution times, and this fact becomes evident when using Reduced Instruction Set Computer (RISC) microprocessors in which the operational frequencies are low in comparison with the high operational frequencies of traditional personal computers (PCs). This paper compares two hardware implementations of the parallel PSO algorithm using an efficient floating-point arithmetic which perform computations with large dynamic range and high precision. The full-parallel and the partially-parallel PSO architectures allow the parallel capabilities of the PSO to be exploited in order to decrease the running time. Three well-known benchmark test functions have been used to validate the hardware architectures and a comparison in terms of cost in logic area, quality of the solution and performance is reported. In addition, a comparison of the execution time between the hardware and two C-code software implementations, based on a Intel Core Duo at 1.6GHz and a embedded Microblaze microprocessor at 50MHz, are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信