QuantWiz:一个可扩展的并行软件包,用于无标签蛋白质定量

Junchang Wang, Yunquan Zhang, Xianyi Zhang, Xiangzheng Sun, Q. Sheng
{"title":"QuantWiz:一个可扩展的并行软件包,用于无标签蛋白质定量","authors":"Junchang Wang, Yunquan Zhang, Xianyi Zhang, Xiangzheng Sun, Q. Sheng","doi":"10.1109/BICTA.2010.5645126","DOIUrl":null,"url":null,"abstract":"In the context of the prosperous development of Proteomics in life science, protein quantification, especially these based on Mass Spectrometry (short for MS) method, becomes an essential part of research. In our previous work, we developed a new software package called QuantWiz for high performance Liquid Chromatography (short for LC)-MS-based label-free protein quantification. We solved those problems of portability, applicability and longtime running existed in other software for protein quantification based on MS method. In this paper, we first compared the LC-MS-based label-free protein quantification accuracy of QuantWiz with the well-known Census software package. Then we designed and implemented a distributed memory version parallel algorithm for QuantWiz. Finally, we performed scalability testing of our new parallel algorithm and showed that our new parallel algorithm can scale up to 512 processes on Dawning 5000A.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuantWiz: A scalable parallel software package for label-free protein quantification\",\"authors\":\"Junchang Wang, Yunquan Zhang, Xianyi Zhang, Xiangzheng Sun, Q. Sheng\",\"doi\":\"10.1109/BICTA.2010.5645126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of the prosperous development of Proteomics in life science, protein quantification, especially these based on Mass Spectrometry (short for MS) method, becomes an essential part of research. In our previous work, we developed a new software package called QuantWiz for high performance Liquid Chromatography (short for LC)-MS-based label-free protein quantification. We solved those problems of portability, applicability and longtime running existed in other software for protein quantification based on MS method. In this paper, we first compared the LC-MS-based label-free protein quantification accuracy of QuantWiz with the well-known Census software package. Then we designed and implemented a distributed memory version parallel algorithm for QuantWiz. Finally, we performed scalability testing of our new parallel algorithm and showed that our new parallel algorithm can scale up to 512 processes on Dawning 5000A.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在蛋白质组学在生命科学领域蓬勃发展的背景下,蛋白质定量,特别是基于质谱(MS)方法的蛋白质定量成为研究的重要组成部分。在我们之前的工作中,我们开发了一个名为QuantWiz的新软件包,用于基于LC - ms的高效液相色谱(简称LC)无标签蛋白质定量。解决了其他基于质谱法的蛋白质定量软件存在的可移植性、适用性和长时间运行的问题。在本文中,我们首先比较了QuantWiz基于lc - ms的无标签蛋白质定量精度与著名的Census软件包。然后,我们设计并实现了一种分布式内存版本并行算法。最后,我们对我们的新并行算法进行了可扩展性测试,并表明我们的新并行算法可以在dawn 5000A上扩展到512个进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuantWiz: A scalable parallel software package for label-free protein quantification
In the context of the prosperous development of Proteomics in life science, protein quantification, especially these based on Mass Spectrometry (short for MS) method, becomes an essential part of research. In our previous work, we developed a new software package called QuantWiz for high performance Liquid Chromatography (short for LC)-MS-based label-free protein quantification. We solved those problems of portability, applicability and longtime running existed in other software for protein quantification based on MS method. In this paper, we first compared the LC-MS-based label-free protein quantification accuracy of QuantWiz with the well-known Census software package. Then we designed and implemented a distributed memory version parallel algorithm for QuantWiz. Finally, we performed scalability testing of our new parallel algorithm and showed that our new parallel algorithm can scale up to 512 processes on Dawning 5000A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信