基于lpv和基于学习的道路车辆联合观测器设计

Dániel Fényes, T. Hegedüs, B. Németh
{"title":"基于lpv和基于学习的道路车辆联合观测器设计","authors":"Dániel Fényes, T. Hegedüs, B. Németh","doi":"10.1109/MED54222.2022.9837151","DOIUrl":null,"url":null,"abstract":"In this paper a novel observer design method is proposed, which combines Linear Parameter-Varying-based (LPV) and machine-learning-based design tools. As a first step, a parameter optimization technique is developed to achieve a polytopic LPV formulation of the system model. This modeling technique also involves a machine-learning-based solution to determine scheduling parameters for the LPV system. In the second step, a LPV-based observer design based on the achieved system representation is proposed. Finally, the operation and the effectiveness of the proposed observer algorithm are demonstrated through a vehicle-oriented estimation problem, i.e., estimation of the lateral velocity. In the paper two simulations illustrate the accuracy and the advantageous impact of the observer on the control performances of the closed-loop system.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined observer design for road vehicles using LPV-based and learning-based methods\",\"authors\":\"Dániel Fényes, T. Hegedüs, B. Németh\",\"doi\":\"10.1109/MED54222.2022.9837151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel observer design method is proposed, which combines Linear Parameter-Varying-based (LPV) and machine-learning-based design tools. As a first step, a parameter optimization technique is developed to achieve a polytopic LPV formulation of the system model. This modeling technique also involves a machine-learning-based solution to determine scheduling parameters for the LPV system. In the second step, a LPV-based observer design based on the achieved system representation is proposed. Finally, the operation and the effectiveness of the proposed observer algorithm are demonstrated through a vehicle-oriented estimation problem, i.e., estimation of the lateral velocity. In the paper two simulations illustrate the accuracy and the advantageous impact of the observer on the control performances of the closed-loop system.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的观测器设计方法,该方法将基于线性参数变化(LPV)和基于机器学习的设计工具相结合。首先,开发了一种参数优化技术来实现系统模型的多面体LPV公式。该建模技术还涉及基于机器学习的解决方案,以确定LPV系统的调度参数。第二步,基于实现的系统表示,提出了一种基于lpv的观测器设计。最后,通过一个面向车辆的估计问题,即侧向速度的估计,证明了所提观测器算法的有效性。文中的两个仿真说明了观测器的精度和对闭环系统控制性能的有利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined observer design for road vehicles using LPV-based and learning-based methods
In this paper a novel observer design method is proposed, which combines Linear Parameter-Varying-based (LPV) and machine-learning-based design tools. As a first step, a parameter optimization technique is developed to achieve a polytopic LPV formulation of the system model. This modeling technique also involves a machine-learning-based solution to determine scheduling parameters for the LPV system. In the second step, a LPV-based observer design based on the achieved system representation is proposed. Finally, the operation and the effectiveness of the proposed observer algorithm are demonstrated through a vehicle-oriented estimation problem, i.e., estimation of the lateral velocity. In the paper two simulations illustrate the accuracy and the advantageous impact of the observer on the control performances of the closed-loop system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信