I. Jimenez, Stephan Weiss, M. Mendicute, E. Arruti
{"title":"具有矢量预编码的多用户MIMO放大和转发中继方案","authors":"I. Jimenez, Stephan Weiss, M. Mendicute, E. Arruti","doi":"10.1109/ISSPIT.2011.6151615","DOIUrl":null,"url":null,"abstract":"A two-hop multiuser multiple-input multiple-output (MIMO) amplify-and-forward (AF) relay scenario is analyzed in this paper, where the main design challenge resides on the selection of the interdependent precoding and relaying matrices. After analyzing the optimal joint iterative linear design of the precoding and relaying matrices, two simpler non-iterative approaches are proposed and derived: hop-by-hop minimum mean squared error (MMSE) minimization and block diagonal geometric mean decomposition (BD-GMD). The combination of these two techniques and vector precoding (VP) is then proposed to greatly improve the performance of the systems. Provided simulation results prove that the combination of non-linear precoding and simpler matrix design strategies can outperform the optimal and complex joint iterative design with linear transmission.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multiuser MIMO amplify-and-forward relaying schemes with vector precoding\",\"authors\":\"I. Jimenez, Stephan Weiss, M. Mendicute, E. Arruti\",\"doi\":\"10.1109/ISSPIT.2011.6151615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-hop multiuser multiple-input multiple-output (MIMO) amplify-and-forward (AF) relay scenario is analyzed in this paper, where the main design challenge resides on the selection of the interdependent precoding and relaying matrices. After analyzing the optimal joint iterative linear design of the precoding and relaying matrices, two simpler non-iterative approaches are proposed and derived: hop-by-hop minimum mean squared error (MMSE) minimization and block diagonal geometric mean decomposition (BD-GMD). The combination of these two techniques and vector precoding (VP) is then proposed to greatly improve the performance of the systems. Provided simulation results prove that the combination of non-linear precoding and simpler matrix design strategies can outperform the optimal and complex joint iterative design with linear transmission.\",\"PeriodicalId\":288042,\"journal\":{\"name\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2011.6151615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiuser MIMO amplify-and-forward relaying schemes with vector precoding
A two-hop multiuser multiple-input multiple-output (MIMO) amplify-and-forward (AF) relay scenario is analyzed in this paper, where the main design challenge resides on the selection of the interdependent precoding and relaying matrices. After analyzing the optimal joint iterative linear design of the precoding and relaying matrices, two simpler non-iterative approaches are proposed and derived: hop-by-hop minimum mean squared error (MMSE) minimization and block diagonal geometric mean decomposition (BD-GMD). The combination of these two techniques and vector precoding (VP) is then proposed to greatly improve the performance of the systems. Provided simulation results prove that the combination of non-linear precoding and simpler matrix design strategies can outperform the optimal and complex joint iterative design with linear transmission.