低分辨率FIR行人识别的多检测器方法

Mirko Miihlisch, M. Oberlander, O. Lohlein, D. Gavrila, Werner Ritter
{"title":"低分辨率FIR行人识别的多检测器方法","authors":"Mirko Miihlisch, M. Oberlander, O. Lohlein, D. Gavrila, Werner Ritter","doi":"10.1109/IVS.2005.1505123","DOIUrl":null,"url":null,"abstract":"In this paper we present a recognition scheme, which is both reliable and fast. The scheme comprises the simultaneous harmonized use of three powerful detection algorithms, the hyper permutation network (HPN), a hierarchical contour matching (HCM) algorithm and a cascaded classifier approach. Each algorithm is evaluated separately and afterwards, based on the evaluation results, the fusion of the detection results is performed by a particle filter approach.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"51 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A multiple detector approach to low-resolution FIR pedestrian recognition\",\"authors\":\"Mirko Miihlisch, M. Oberlander, O. Lohlein, D. Gavrila, Werner Ritter\",\"doi\":\"10.1109/IVS.2005.1505123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a recognition scheme, which is both reliable and fast. The scheme comprises the simultaneous harmonized use of three powerful detection algorithms, the hyper permutation network (HPN), a hierarchical contour matching (HCM) algorithm and a cascaded classifier approach. Each algorithm is evaluated separately and afterwards, based on the evaluation results, the fusion of the detection results is performed by a particle filter approach.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"51 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文提出了一种既可靠又快速的识别方案。该方案包括同时协调使用三种强大的检测算法,超置换网络(HPN),分层轮廓匹配(HCM)算法和级联分类器方法。对每一种算法分别进行评价,然后根据评价结果,采用粒子滤波方法对检测结果进行融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiple detector approach to low-resolution FIR pedestrian recognition
In this paper we present a recognition scheme, which is both reliable and fast. The scheme comprises the simultaneous harmonized use of three powerful detection algorithms, the hyper permutation network (HPN), a hierarchical contour matching (HCM) algorithm and a cascaded classifier approach. Each algorithm is evaluated separately and afterwards, based on the evaluation results, the fusion of the detection results is performed by a particle filter approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信