基于固有频率的飞机发动机支撑架拓扑优化

Braden T Warwick, C. Mechefske, I. Kim
{"title":"基于固有频率的飞机发动机支撑架拓扑优化","authors":"Braden T Warwick, C. Mechefske, I. Kim","doi":"10.1115/detc2020-22286","DOIUrl":null,"url":null,"abstract":"\n The multi-stage design space refinement (MSDSR) technique increases the likelihood of convergence of topology optimization (TO) with large volume fraction constraints. This work considers MSDSR TO of an aircraft engine support frame with a natural frequency-based objective function. The problem statement maximized the first natural frequency, effectively maximizing the stiffness to mass ratio of the frame. The problem statement considered natural frequency constraints, which eliminated all natural frequencies within 5% of the engine excitation frequency times a safety factor of two. The design space did not consider the initial geometry; therefore, allowing for the determination of the optimal stiffener location on the initial geometry. The results of this work increased the first natural frequency of the engine support frame by 25.9%, eliminated all natural frequencies within 11.3% of the engine excitation frequency, and added only 0.253 kg of mass to the frame. The results of this work further demonstrate the advantages of MSDSR TO and the impact that it can have on the aerospace industry. Specifically, the design space considered in this work allows for the structural reinforcement of a pre-existing design, which is easier to implement and easier to regulate than similar results from the literature.","PeriodicalId":398186,"journal":{"name":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Frequency Based Topology Optimization of an Aircraft Engine Support Frame\",\"authors\":\"Braden T Warwick, C. Mechefske, I. Kim\",\"doi\":\"10.1115/detc2020-22286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The multi-stage design space refinement (MSDSR) technique increases the likelihood of convergence of topology optimization (TO) with large volume fraction constraints. This work considers MSDSR TO of an aircraft engine support frame with a natural frequency-based objective function. The problem statement maximized the first natural frequency, effectively maximizing the stiffness to mass ratio of the frame. The problem statement considered natural frequency constraints, which eliminated all natural frequencies within 5% of the engine excitation frequency times a safety factor of two. The design space did not consider the initial geometry; therefore, allowing for the determination of the optimal stiffener location on the initial geometry. The results of this work increased the first natural frequency of the engine support frame by 25.9%, eliminated all natural frequencies within 11.3% of the engine excitation frequency, and added only 0.253 kg of mass to the frame. The results of this work further demonstrate the advantages of MSDSR TO and the impact that it can have on the aerospace industry. Specifically, the design space considered in this work allows for the structural reinforcement of a pre-existing design, which is easier to implement and easier to regulate than similar results from the literature.\",\"PeriodicalId\":398186,\"journal\":{\"name\":\"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多阶段设计空间细化(MSDSR)技术提高了大体积分数约束下拓扑优化(TO)收敛的可能性。本文采用基于固有频率的目标函数来考虑某型飞机发动机支承架的mssdsr TO。问题陈述最大化了第一固有频率,有效地最大化了框架的刚度与质量比。问题说明考虑了固有频率限制,消除了发动机激励频率5%以内的所有固有频率乘以2的安全系数。设计空间没有考虑初始几何形状;因此,允许在初始几何结构上确定最佳加强筋位置。这项工作的结果使发动机支撑架的第一固有频率提高了25.9%,消除了发动机激励频率11.3%以内的所有固有频率,并且仅为机架增加了0.253 kg的质量。这项工作的结果进一步证明了mssr TO的优势及其对航空航天工业的影响。具体来说,在这项工作中考虑的设计空间允许预先存在的设计的结构加固,这比文献中的类似结果更容易实施和更容易调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Frequency Based Topology Optimization of an Aircraft Engine Support Frame
The multi-stage design space refinement (MSDSR) technique increases the likelihood of convergence of topology optimization (TO) with large volume fraction constraints. This work considers MSDSR TO of an aircraft engine support frame with a natural frequency-based objective function. The problem statement maximized the first natural frequency, effectively maximizing the stiffness to mass ratio of the frame. The problem statement considered natural frequency constraints, which eliminated all natural frequencies within 5% of the engine excitation frequency times a safety factor of two. The design space did not consider the initial geometry; therefore, allowing for the determination of the optimal stiffener location on the initial geometry. The results of this work increased the first natural frequency of the engine support frame by 25.9%, eliminated all natural frequencies within 11.3% of the engine excitation frequency, and added only 0.253 kg of mass to the frame. The results of this work further demonstrate the advantages of MSDSR TO and the impact that it can have on the aerospace industry. Specifically, the design space considered in this work allows for the structural reinforcement of a pre-existing design, which is easier to implement and easier to regulate than similar results from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信