基于脑激发脉冲神经网络的EEG数据情绪分类

Yulin He, Chuandong Li, Xingxing Ju
{"title":"基于脑激发脉冲神经网络的EEG数据情绪分类","authors":"Yulin He, Chuandong Li, Xingxing Ju","doi":"10.1109/ICICIP53388.2021.9642186","DOIUrl":null,"url":null,"abstract":"As an important application of emotion artificial intelligence, emotion classification provides the basis for the realization of affective brain-computer interface (aBCI). In this study, the NeuCube is used to learn and classify Electroencephalogram (EEG) data from the DEAP dataset. NeuCube is a type of spiking neural network (SNN) framework developed based on the real human brain. It is very suitable for analyzing and processing spatio-temporal data. Based on the 10-fold cross-validation method, we obtain a mean accuracy of 68.91 % in the emotional binary valence classification problem. Meanwhile, the EEG data recorded from F3 and F4 electrode channels provide more information compared with Fp1 and Fp2. The results prove that the spiking neural network can be applied to the task of emotion classification effectively.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Emotion Classification Using EEG Data in a Brain-Inspired Spiking Neural Network\",\"authors\":\"Yulin He, Chuandong Li, Xingxing Ju\",\"doi\":\"10.1109/ICICIP53388.2021.9642186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important application of emotion artificial intelligence, emotion classification provides the basis for the realization of affective brain-computer interface (aBCI). In this study, the NeuCube is used to learn and classify Electroencephalogram (EEG) data from the DEAP dataset. NeuCube is a type of spiking neural network (SNN) framework developed based on the real human brain. It is very suitable for analyzing and processing spatio-temporal data. Based on the 10-fold cross-validation method, we obtain a mean accuracy of 68.91 % in the emotional binary valence classification problem. Meanwhile, the EEG data recorded from F3 and F4 electrode channels provide more information compared with Fp1 and Fp2. The results prove that the spiking neural network can be applied to the task of emotion classification effectively.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

情感分类是情感人工智能的重要应用,是实现情感脑机接口(aBCI)的基础。在这项研究中,NeuCube被用来学习和分类来自DEAP数据集的脑电图(EEG)数据。NeuCube是一种基于真实人脑开发的脉冲神经网络(SNN)框架。它非常适合于分析和处理时空数据。基于10倍交叉验证方法,我们在情绪二价分类问题中获得了68.91%的平均准确率。与Fp1和Fp2相比,F3和F4电极通道记录的脑电数据提供了更多的信息。结果表明,脉冲神经网络可以有效地应用于情绪分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Classification Using EEG Data in a Brain-Inspired Spiking Neural Network
As an important application of emotion artificial intelligence, emotion classification provides the basis for the realization of affective brain-computer interface (aBCI). In this study, the NeuCube is used to learn and classify Electroencephalogram (EEG) data from the DEAP dataset. NeuCube is a type of spiking neural network (SNN) framework developed based on the real human brain. It is very suitable for analyzing and processing spatio-temporal data. Based on the 10-fold cross-validation method, we obtain a mean accuracy of 68.91 % in the emotional binary valence classification problem. Meanwhile, the EEG data recorded from F3 and F4 electrode channels provide more information compared with Fp1 and Fp2. The results prove that the spiking neural network can be applied to the task of emotion classification effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信