使用深度学习的自动配音和面部同步

Saad A. Bazaz, AbdurRehman Subhani, Syed Z.A. Hadi
{"title":"使用深度学习的自动配音和面部同步","authors":"Saad A. Bazaz, AbdurRehman Subhani, Syed Z.A. Hadi","doi":"10.1109/ICAI55435.2022.9773697","DOIUrl":null,"url":null,"abstract":"With the recent global boom in video content creation and consumption during the pandemic, linguistics remains the only barrier in producing im-mersive content for global communities. To solve this, content creators use a manual dubbing process, where voice actors are hired to produce a “voiceover” over the video. We aim to break down the language barrier and thus make “videos for everyone”. We propose an end-to-end architecture that automatically translates videos and produces synchronized dubbed voices using deep learning models, in a specified target language. Our architecture takes a modular approach, allowing the user to tweak each component or replace it with a better one. We present our results from said architecture, and describe possible future motivations to scale this to accommodate multiple languages and multiple use cases. A sample of our results can be found here: https://youtu.be/eGB-gL6bDr4","PeriodicalId":146842,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence (ICAI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Dubbing and Facial Synchronization using Deep Learning\",\"authors\":\"Saad A. Bazaz, AbdurRehman Subhani, Syed Z.A. Hadi\",\"doi\":\"10.1109/ICAI55435.2022.9773697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent global boom in video content creation and consumption during the pandemic, linguistics remains the only barrier in producing im-mersive content for global communities. To solve this, content creators use a manual dubbing process, where voice actors are hired to produce a “voiceover” over the video. We aim to break down the language barrier and thus make “videos for everyone”. We propose an end-to-end architecture that automatically translates videos and produces synchronized dubbed voices using deep learning models, in a specified target language. Our architecture takes a modular approach, allowing the user to tweak each component or replace it with a better one. We present our results from said architecture, and describe possible future motivations to scale this to accommodate multiple languages and multiple use cases. A sample of our results can be found here: https://youtu.be/eGB-gL6bDr4\",\"PeriodicalId\":146842,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI55435.2022.9773697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI55435.2022.9773697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着最近全球视频内容创作和消费在疫情期间的繁荣,语言学仍然是为全球社区制作沉浸式内容的唯一障碍。为了解决这个问题,内容创作者使用手动配音过程,即聘请配音演员为视频制作“画外音”。我们的目标是打破语言障碍,制作“人人都能看的视频”。我们提出了一个端到端架构,该架构使用深度学习模型以指定的目标语言自动翻译视频并产生同步的配音声音。我们的架构采用模块化方法,允许用户调整每个组件或用更好的组件替换它。我们展示了从上述体系结构中得到的结果,并描述了将来扩展该体系结构以适应多种语言和多种用例的可能动机。我们的结果样本可以在这里找到:https://youtu.be/eGB-gL6bDr4
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Dubbing and Facial Synchronization using Deep Learning
With the recent global boom in video content creation and consumption during the pandemic, linguistics remains the only barrier in producing im-mersive content for global communities. To solve this, content creators use a manual dubbing process, where voice actors are hired to produce a “voiceover” over the video. We aim to break down the language barrier and thus make “videos for everyone”. We propose an end-to-end architecture that automatically translates videos and produces synchronized dubbed voices using deep learning models, in a specified target language. Our architecture takes a modular approach, allowing the user to tweak each component or replace it with a better one. We present our results from said architecture, and describe possible future motivations to scale this to accommodate multiple languages and multiple use cases. A sample of our results can be found here: https://youtu.be/eGB-gL6bDr4
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信