利用被囊虫群优化改进PMSM性能

G. Vishal, J. Pradeep
{"title":"利用被囊虫群优化改进PMSM性能","authors":"G. Vishal, J. Pradeep","doi":"10.1109/ESCI53509.2022.9758351","DOIUrl":null,"url":null,"abstract":"Humans are moving towards a pollution-free environment, Electrical vehicles (EV) could help to achieve this since one of the major contributors to pollution is Conventional vehicles. Increasing the performance of EV's will promote the use of EVs in human civilization. For any electrical machine, performance depends on Time Domain parameters. By optimizing the time domain parameter, the performance increases drastically. With a simple optimized PID controller, the motor could achieve performance similar to other controllers like the Fuzzy logic system. In many papers, PID is tuned using Particle swarm optimization (PSO). Recently, a new biological metaheuristic technique is determined that is Tunicate swarm Algorithm (TSA). This method is better than many biological metaheuristic techniques. In this paper, the TSA is implemented to the PID controller for the Permanent Magnet Synchronous Motor (PMSM) operation thereby improving the Speed response and comparing with the existing PSO and conventional PID controller.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Performance of PMSM using Tunicate Swarm optimization\",\"authors\":\"G. Vishal, J. Pradeep\",\"doi\":\"10.1109/ESCI53509.2022.9758351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans are moving towards a pollution-free environment, Electrical vehicles (EV) could help to achieve this since one of the major contributors to pollution is Conventional vehicles. Increasing the performance of EV's will promote the use of EVs in human civilization. For any electrical machine, performance depends on Time Domain parameters. By optimizing the time domain parameter, the performance increases drastically. With a simple optimized PID controller, the motor could achieve performance similar to other controllers like the Fuzzy logic system. In many papers, PID is tuned using Particle swarm optimization (PSO). Recently, a new biological metaheuristic technique is determined that is Tunicate swarm Algorithm (TSA). This method is better than many biological metaheuristic techniques. In this paper, the TSA is implemented to the PID controller for the Permanent Magnet Synchronous Motor (PMSM) operation thereby improving the Speed response and comparing with the existing PSO and conventional PID controller.\",\"PeriodicalId\":436539,\"journal\":{\"name\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCI53509.2022.9758351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类正朝着无污染的环境发展,电动汽车(EV)可以帮助实现这一目标,因为污染的主要来源之一是传统汽车。提高电动汽车的性能将促进电动汽车在人类文明中的使用。对于任何电机,性能取决于时域参数。通过对时域参数的优化,系统性能得到显著提高。通过简单的优化PID控制器,电机可以实现与模糊逻辑系统等其他控制器相似的性能。在许多论文中,PID是使用粒子群优化(PSO)来调整的。近年来,人们提出了一种新的生物元启发式算法——被囊虫群算法(TSA)。这种方法优于许多生物元启发式技术。本文将TSA应用于永磁同步电机(PMSM)运行的PID控制器,提高了速度响应,并与现有的PSO和传统PID控制器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Performance of PMSM using Tunicate Swarm optimization
Humans are moving towards a pollution-free environment, Electrical vehicles (EV) could help to achieve this since one of the major contributors to pollution is Conventional vehicles. Increasing the performance of EV's will promote the use of EVs in human civilization. For any electrical machine, performance depends on Time Domain parameters. By optimizing the time domain parameter, the performance increases drastically. With a simple optimized PID controller, the motor could achieve performance similar to other controllers like the Fuzzy logic system. In many papers, PID is tuned using Particle swarm optimization (PSO). Recently, a new biological metaheuristic technique is determined that is Tunicate swarm Algorithm (TSA). This method is better than many biological metaheuristic techniques. In this paper, the TSA is implemented to the PID controller for the Permanent Magnet Synchronous Motor (PMSM) operation thereby improving the Speed response and comparing with the existing PSO and conventional PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信