基于时变模糊马尔可夫模型的意图估计

Peter Liu, Chang-En Yang
{"title":"基于时变模糊马尔可夫模型的意图估计","authors":"Peter Liu, Chang-En Yang","doi":"10.1109/CICA.2013.6611682","DOIUrl":null,"url":null,"abstract":"We propose intention estimation using time-varying fuzzy Markov models. Based on human non-verbal information, such as gestures or posture change, we vary the probability between states of the model to improve the accuracy of estimation. The time-varying fuzzy Markov model therefore composes of two part. First, we define the initial probability of the fuzzy Markov model according to human experience. We then adjust the probability according to the actual time-varying life environment estimate the human intention. The advantages of the approach are: non-verbal information is core of human intention; time-varying probability improves estimation accuracy; and fuzzy inference consider practical human experience. The comparison of simulations for both fixed fuzzy Markov model and time-varying fuzzy Markov model reveals the latter is more accurate in estimating human intention.","PeriodicalId":424622,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intention estimation using time-varying fuzzy Markov models\",\"authors\":\"Peter Liu, Chang-En Yang\",\"doi\":\"10.1109/CICA.2013.6611682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose intention estimation using time-varying fuzzy Markov models. Based on human non-verbal information, such as gestures or posture change, we vary the probability between states of the model to improve the accuracy of estimation. The time-varying fuzzy Markov model therefore composes of two part. First, we define the initial probability of the fuzzy Markov model according to human experience. We then adjust the probability according to the actual time-varying life environment estimate the human intention. The advantages of the approach are: non-verbal information is core of human intention; time-varying probability improves estimation accuracy; and fuzzy inference consider practical human experience. The comparison of simulations for both fixed fuzzy Markov model and time-varying fuzzy Markov model reveals the latter is more accurate in estimating human intention.\",\"PeriodicalId\":424622,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2013.6611682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2013.6611682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了使用时变模糊马尔可夫模型的意图估计。基于人类的非语言信息,如手势或姿势的变化,我们改变模型状态之间的概率,以提高估计的准确性。时变模糊马尔可夫模型由两部分组成。首先,根据人的经验定义模糊马尔可夫模型的初始概率。然后根据实际时变生活环境对概率进行调整,估计出人的意图。该方法的优点是:非语言信息是人类意图的核心;时变概率提高了估计精度;模糊推理考虑了人类的实际经验。通过对固定模糊马尔可夫模型和时变模糊马尔可夫模型的仿真比较,发现时变模糊马尔可夫模型在估计人的意图方面更为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intention estimation using time-varying fuzzy Markov models
We propose intention estimation using time-varying fuzzy Markov models. Based on human non-verbal information, such as gestures or posture change, we vary the probability between states of the model to improve the accuracy of estimation. The time-varying fuzzy Markov model therefore composes of two part. First, we define the initial probability of the fuzzy Markov model according to human experience. We then adjust the probability according to the actual time-varying life environment estimate the human intention. The advantages of the approach are: non-verbal information is core of human intention; time-varying probability improves estimation accuracy; and fuzzy inference consider practical human experience. The comparison of simulations for both fixed fuzzy Markov model and time-varying fuzzy Markov model reveals the latter is more accurate in estimating human intention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信