谁是体育活动者?使用NHANES数据对体育活动进行分类和分析

Khyoi Nu, Tahar Touati, Srushti Buddhadev, R. Sun, M. Smuck, I. H. J. Song
{"title":"谁是体育活动者?使用NHANES数据对体育活动进行分类和分析","authors":"Khyoi Nu, Tahar Touati, Srushti Buddhadev, R. Sun, M. Smuck, I. H. J. Song","doi":"10.1109/SSCI47803.2020.9308353","DOIUrl":null,"url":null,"abstract":"Physical activity (PA) brings health benefits to adults. It is a crucial indicator of the general health condition, whether a person is physically active or not. This paper proposes ML (Machine Learning) -based PA classifiers to predict the individual PA level for each person. Besides, the proposed classifiers extract the determinants that identify an active person. The classifiers yield an AUC of up to 0.81 and specificity and sensitivity of up to 0.79. From the classifiers, we conclude that age and gender are the most influential determinants. Notably, body mass index (BMI) impacts females more strongly than males, whereas screen time for TV impacts males more strongly. The result of the study guides a proper type of PA intervention and provides an efficient way to engage in personalized health programs and medical treatments.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Who is physically active? Classification and Analysis of Physical Activity using NHANES data\",\"authors\":\"Khyoi Nu, Tahar Touati, Srushti Buddhadev, R. Sun, M. Smuck, I. H. J. Song\",\"doi\":\"10.1109/SSCI47803.2020.9308353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical activity (PA) brings health benefits to adults. It is a crucial indicator of the general health condition, whether a person is physically active or not. This paper proposes ML (Machine Learning) -based PA classifiers to predict the individual PA level for each person. Besides, the proposed classifiers extract the determinants that identify an active person. The classifiers yield an AUC of up to 0.81 and specificity and sensitivity of up to 0.79. From the classifiers, we conclude that age and gender are the most influential determinants. Notably, body mass index (BMI) impacts females more strongly than males, whereas screen time for TV impacts males more strongly. The result of the study guides a proper type of PA intervention and provides an efficient way to engage in personalized health programs and medical treatments.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

体育活动(PA)给成年人带来健康益处。它是一个人身体活动与否的总体健康状况的关键指标。本文提出了基于ML(机器学习)的PA分类器来预测每个人的个人PA水平。此外,所提出的分类器提取的决定因素,以确定一个活跃的人。分类器的AUC高达0.81,特异性和敏感性高达0.79。从分类器中,我们得出结论,年龄和性别是最具影响力的决定因素。值得注意的是,身体质量指数(BMI)对女性的影响比男性更大,而看电视的时间对男性的影响更大。研究结果指导了适当类型的PA干预,并提供了一种有效的方法来参与个性化的健康计划和医学治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Who is physically active? Classification and Analysis of Physical Activity using NHANES data
Physical activity (PA) brings health benefits to adults. It is a crucial indicator of the general health condition, whether a person is physically active or not. This paper proposes ML (Machine Learning) -based PA classifiers to predict the individual PA level for each person. Besides, the proposed classifiers extract the determinants that identify an active person. The classifiers yield an AUC of up to 0.81 and specificity and sensitivity of up to 0.79. From the classifiers, we conclude that age and gender are the most influential determinants. Notably, body mass index (BMI) impacts females more strongly than males, whereas screen time for TV impacts males more strongly. The result of the study guides a proper type of PA intervention and provides an efficient way to engage in personalized health programs and medical treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信