Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină
{"title":"一种基于分解的可变遗忘因子RLS算法","authors":"Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină","doi":"10.1109/COMM48946.2020.9141974","DOIUrl":null,"url":null,"abstract":"The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Decomposition-Based RLS Algorithm with Variable Forgetting Factors\",\"authors\":\"Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină\",\"doi\":\"10.1109/COMM48946.2020.9141974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.\",\"PeriodicalId\":405841,\"journal\":{\"name\":\"2020 13th International Conference on Communications (COMM)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMM48946.2020.9141974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9141974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Decomposition-Based RLS Algorithm with Variable Forgetting Factors
The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.