一种基于分解的可变遗忘因子RLS算法

Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină
{"title":"一种基于分解的可变遗忘因子RLS算法","authors":"Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină","doi":"10.1109/COMM48946.2020.9141974","DOIUrl":null,"url":null,"abstract":"The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Decomposition-Based RLS Algorithm with Variable Forgetting Factors\",\"authors\":\"Camelia Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochină\",\"doi\":\"10.1109/COMM48946.2020.9141974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.\",\"PeriodicalId\":405841,\"journal\":{\"name\":\"2020 13th International Conference on Communications (COMM)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMM48946.2020.9141974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9141974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

递归最小二乘(RLS)算法的性能主要受遗忘因子的控制。使用这个重要参数的恒定值会导致主要性能标准之间的折衷,即低误调整与快速跟踪。本文提出了一种基于最近Kronecker积分解(即RLS- nkp)的可变遗忘因子(VFF)解决方案,适用于最近发展的RLS算法。RLS-NKP算法利用脉冲响应的有效分解,因此适用于长长度系统(如回波路径)的识别。由此产生的VFF- rls - nkp算法继承了其原始对应算法的性能特征,同时也由于VFF方法而获得了改进。在回声消除环境下进行的模拟支持这种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decomposition-Based RLS Algorithm with Variable Forgetting Factors
The performance of the recursive least-squares (RLS) algorithm is mainly controlled by the forgetting factor. Using a constant value of this important parameter leads to a compromise between the main performance criteria, i.e., low misadjustment versus fast tracking. In this paper, we propose a variable forgetting factor (VFF) solution applicable to the recently developed RLS algorithm based on the nearest Kronecker product decomposition (namely RLS-NKP). The RLS-NKP algorithm exploits an efficient decomposition of the impulse response, thus being suitable for the identification of long length systems (like echo paths). The resulting VFF-RLS-NKP algorithm inherits the performance features of its original counterpart, while also achieving improvements due to the VFF approach. Simulations performed in the context of echo cancellation support this behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信