{"title":"在fpga上实现IEEE单精度浮点加法和乘法","authors":"L. Louca, T. A. Cook, W. H. Johnson","doi":"10.1109/FPGA.1996.564761","DOIUrl":null,"url":null,"abstract":"Floating point operations are hard to implement on FPGAs because of the complexity of their algorithms. On the other hand, many scientific problems require floating point arithmetic with high levels of accuracy in their calculations. Therefore, we have explored FPGA implementations of addition and multiplication for IEEE single precision floating-point numbers. Customizations were performed where this was possible in order to save chip area, or get the most out of our prototype board. The implementations tradeoff area and speed for accuracy. The adder is a bit-parallel adder, and the multiplier is a digit-serial multiplier. Prototypes have been implemented on Altera FLEX8000s, and peak rates of 7 MFlops for 32-bit addition and 2.3 MFlops for 32-bit multiplication have been obtained.","PeriodicalId":244873,"journal":{"name":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":"{\"title\":\"Implementation of IEEE single precision floating point addition and multiplication on FPGAs\",\"authors\":\"L. Louca, T. A. Cook, W. H. Johnson\",\"doi\":\"10.1109/FPGA.1996.564761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating point operations are hard to implement on FPGAs because of the complexity of their algorithms. On the other hand, many scientific problems require floating point arithmetic with high levels of accuracy in their calculations. Therefore, we have explored FPGA implementations of addition and multiplication for IEEE single precision floating-point numbers. Customizations were performed where this was possible in order to save chip area, or get the most out of our prototype board. The implementations tradeoff area and speed for accuracy. The adder is a bit-parallel adder, and the multiplier is a digit-serial multiplier. Prototypes have been implemented on Altera FLEX8000s, and peak rates of 7 MFlops for 32-bit addition and 2.3 MFlops for 32-bit multiplication have been obtained.\",\"PeriodicalId\":244873,\"journal\":{\"name\":\"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"163\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPGA.1996.564761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1996.564761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of IEEE single precision floating point addition and multiplication on FPGAs
Floating point operations are hard to implement on FPGAs because of the complexity of their algorithms. On the other hand, many scientific problems require floating point arithmetic with high levels of accuracy in their calculations. Therefore, we have explored FPGA implementations of addition and multiplication for IEEE single precision floating-point numbers. Customizations were performed where this was possible in order to save chip area, or get the most out of our prototype board. The implementations tradeoff area and speed for accuracy. The adder is a bit-parallel adder, and the multiplier is a digit-serial multiplier. Prototypes have been implemented on Altera FLEX8000s, and peak rates of 7 MFlops for 32-bit addition and 2.3 MFlops for 32-bit multiplication have been obtained.