具有输入饱和约束的多智能体系统的周期行为

Tao Yang, Ziyang Meng, Dimos V. Dimarogonas, K. Johansson
{"title":"具有输入饱和约束的多智能体系统的周期行为","authors":"Tao Yang, Ziyang Meng, Dimos V. Dimarogonas, K. Johansson","doi":"10.1109/CDC.2013.6760577","DOIUrl":null,"url":null,"abstract":"In this paper, we give conditions for the existence of periodic behaviors in a multi-agent system of identical discrete-time double integrators with input saturation constraints. If the feedback gain parameters of the controllers, which are based on relative state measurements of the agent itself and its neighboring agents, are bounded by a value depending on the largest eigenvalue of the Laplacian matrix, then the multi-agent system exhibits a periodic solution for certain initial conditions.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Periodic behaviors in multi-agent systems with input saturation constraints\",\"authors\":\"Tao Yang, Ziyang Meng, Dimos V. Dimarogonas, K. Johansson\",\"doi\":\"10.1109/CDC.2013.6760577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give conditions for the existence of periodic behaviors in a multi-agent system of identical discrete-time double integrators with input saturation constraints. If the feedback gain parameters of the controllers, which are based on relative state measurements of the agent itself and its neighboring agents, are bounded by a value depending on the largest eigenvalue of the Laplacian matrix, then the multi-agent system exhibits a periodic solution for certain initial conditions.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了具有输入饱和约束的具有相同离散时间双积分器的多智能体系统存在周期行为的条件。如果控制器的反馈增益参数(基于智能体自身及其相邻智能体的相对状态测量)被一个依赖于拉普拉斯矩阵的最大特征值的值所限定,则多智能体系统在一定初始条件下表现出周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic behaviors in multi-agent systems with input saturation constraints
In this paper, we give conditions for the existence of periodic behaviors in a multi-agent system of identical discrete-time double integrators with input saturation constraints. If the feedback gain parameters of the controllers, which are based on relative state measurements of the agent itself and its neighboring agents, are bounded by a value depending on the largest eigenvalue of the Laplacian matrix, then the multi-agent system exhibits a periodic solution for certain initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信