通过提取蛋白质序列的信息区域,加快亚细胞定位

Wei Wang, M. Mak, S. Kung
{"title":"通过提取蛋白质序列的信息区域,加快亚细胞定位","authors":"Wei Wang, M. Mak, S. Kung","doi":"10.1109/CIBCB.2010.5510320","DOIUrl":null,"url":null,"abstract":"The functions of proteins are closely related to their subcellular locations. In the post-proteomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by using the information provided by the N-terminal sorting signals. To this end, a cascaded fusion of cleavage site prediction and profile alignment is proposed. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor. Then, only the informative segments are applied to a homology-based classifier for predicting the subcellular locations. Experimental results on a newly constructed dataset show that the method can make use of the best property of both approaches and can attain an accuracy higher than using the full-length sequences. Moreover, the method can reduce the computation time by 20 folds. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speeding up subcellular localization by extracting informative regions of protein sequences for profile alignment\",\"authors\":\"Wei Wang, M. Mak, S. Kung\",\"doi\":\"10.1109/CIBCB.2010.5510320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The functions of proteins are closely related to their subcellular locations. In the post-proteomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by using the information provided by the N-terminal sorting signals. To this end, a cascaded fusion of cleavage site prediction and profile alignment is proposed. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor. Then, only the informative segments are applied to a homology-based classifier for predicting the subcellular locations. Experimental results on a newly constructed dataset show that the method can make use of the best property of both approaches and can attain an accuracy higher than using the full-length sequences. Moreover, the method can reduce the computation time by 20 folds. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

蛋白质的功能与其亚细胞位置密切相关。在后蛋白质组学时代,基因和蛋白质数据量呈指数级增长,这就需要通过计算手段来预测亚细胞定位。本文提出利用n端排序信号提供的信息,减轻基于对准的亚细胞定位预测方法的计算负担。为此,提出了一种将解理位置预测和剖面对准相结合的级联融合方法。具体来说,蛋白质序列的信息片段是由切割位点预测器识别的。然后,仅将信息片段应用于基于同源的分类器以预测亚细胞位置。在一个新建立的数据集上的实验结果表明,该方法可以利用两种方法的最佳特性,并且可以获得比使用全长序列更高的精度。此外,该方法可将计算时间缩短20倍。我们认为,该方法对于生物学家进行大规模蛋白质注释或生物信息学家对涉及成对比对的新算法进行初步研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding up subcellular localization by extracting informative regions of protein sequences for profile alignment
The functions of proteins are closely related to their subcellular locations. In the post-proteomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by using the information provided by the N-terminal sorting signals. To this end, a cascaded fusion of cleavage site prediction and profile alignment is proposed. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor. Then, only the informative segments are applied to a homology-based classifier for predicting the subcellular locations. Experimental results on a newly constructed dataset show that the method can make use of the best property of both approaches and can attain an accuracy higher than using the full-length sequences. Moreover, the method can reduce the computation time by 20 folds. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信