利用Krylov子空间算法探索非线性电路仿真中的指数积分器

Xinyuan Wang, Hao Zhuang, Chung-Kuan Cheng
{"title":"利用Krylov子空间算法探索非线性电路仿真中的指数积分器","authors":"Xinyuan Wang, Hao Zhuang, Chung-Kuan Cheng","doi":"10.1109/ICCAD.2017.8203774","DOIUrl":null,"url":null,"abstract":"We explore Krylov subspace algorithms to calculate ϕ functions of exponential integrators for circuit simulation. Higham [1] pointed out the potential numerical stability risk of ϕ functions computation. However, for the applications to circuit analysis, the choice of methods remains open. This work inspects the accuracy of matrix exponential and vector product with Krylov subspace methods, and identifies the proper approach to achieving numerically stable solutions for nonlinear circuits. Empirial results verify the quality of the proposed methods using various orders of ϕ functions. Furthermore, instead of Newton-Raphson (NR) iterations in conventional methods, an iterative residue correction algorithm is devised for nonlinear system analysis. The stability and efficiency of our methods are illustrated with experiments.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploring the exponential integrators with Krylov subspace algorithms for nonlinear circuit simulation\",\"authors\":\"Xinyuan Wang, Hao Zhuang, Chung-Kuan Cheng\",\"doi\":\"10.1109/ICCAD.2017.8203774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore Krylov subspace algorithms to calculate ϕ functions of exponential integrators for circuit simulation. Higham [1] pointed out the potential numerical stability risk of ϕ functions computation. However, for the applications to circuit analysis, the choice of methods remains open. This work inspects the accuracy of matrix exponential and vector product with Krylov subspace methods, and identifies the proper approach to achieving numerically stable solutions for nonlinear circuits. Empirial results verify the quality of the proposed methods using various orders of ϕ functions. Furthermore, instead of Newton-Raphson (NR) iterations in conventional methods, an iterative residue correction algorithm is devised for nonlinear system analysis. The stability and efficiency of our methods are illustrated with experiments.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们探索了Krylov子空间算法来计算电路仿真中指数积分器的ϕ函数。Higham[1]指出了φ函数计算的潜在数值稳定性风险。然而,对于电路分析的应用,方法的选择仍然是开放的。本文用Krylov子空间方法检验了矩阵指数和向量积的准确性,并确定了实现非线性电路数值稳定解的适当方法。实验结果验证了使用不同阶的ϕ函数所提出方法的质量。在此基础上,提出了一种基于迭代残差校正的非线性系统分析算法,取代了传统方法中的牛顿-拉夫森迭代法。实验证明了该方法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the exponential integrators with Krylov subspace algorithms for nonlinear circuit simulation
We explore Krylov subspace algorithms to calculate ϕ functions of exponential integrators for circuit simulation. Higham [1] pointed out the potential numerical stability risk of ϕ functions computation. However, for the applications to circuit analysis, the choice of methods remains open. This work inspects the accuracy of matrix exponential and vector product with Krylov subspace methods, and identifies the proper approach to achieving numerically stable solutions for nonlinear circuits. Empirial results verify the quality of the proposed methods using various orders of ϕ functions. Furthermore, instead of Newton-Raphson (NR) iterations in conventional methods, an iterative residue correction algorithm is devised for nonlinear system analysis. The stability and efficiency of our methods are illustrated with experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信