{"title":"一种精确计算所有多项式根的补偿Ehrlich-Aberth方法","authors":"T. R. Cameron, S. Graillat","doi":"10.1553/etna_vol55s401","DOIUrl":null,"url":null,"abstract":"In this article, we use the complex compensated Horner method to derive a compensated EhrlichAberth method for the accurate computation of all roots, real or complex, of a polynomial. In particular, under suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth iterations is as accurate as if computed in twice the working precision and then rounded to the working precision. Moreover, we derive a running error bound for the complex compensated Horner method and use it to form robust stopping criteria for the compensated Ehrlich-Aberth iterations. Finally, extensive numerical experiments illustrate that the backward and forward errors of the root approximations computed via the compensated Ehrlich-Aberth method are similar to those obtained with a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in terms of computation time.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a compensated Ehrlich-Aberth method for the accurate computation of all polynomial roots\",\"authors\":\"T. R. Cameron, S. Graillat\",\"doi\":\"10.1553/etna_vol55s401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use the complex compensated Horner method to derive a compensated EhrlichAberth method for the accurate computation of all roots, real or complex, of a polynomial. In particular, under suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth iterations is as accurate as if computed in twice the working precision and then rounded to the working precision. Moreover, we derive a running error bound for the complex compensated Horner method and use it to form robust stopping criteria for the compensated Ehrlich-Aberth iterations. Finally, extensive numerical experiments illustrate that the backward and forward errors of the root approximations computed via the compensated Ehrlich-Aberth method are similar to those obtained with a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in terms of computation time.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a compensated Ehrlich-Aberth method for the accurate computation of all polynomial roots
In this article, we use the complex compensated Horner method to derive a compensated EhrlichAberth method for the accurate computation of all roots, real or complex, of a polynomial. In particular, under suitable conditions, we prove that the limiting accuracy for the compensated Ehrlich-Aberth iterations is as accurate as if computed in twice the working precision and then rounded to the working precision. Moreover, we derive a running error bound for the complex compensated Horner method and use it to form robust stopping criteria for the compensated Ehrlich-Aberth iterations. Finally, extensive numerical experiments illustrate that the backward and forward errors of the root approximations computed via the compensated Ehrlich-Aberth method are similar to those obtained with a quadruple precision implementation of the Ehrlich-Aberth method with a significant speed-up in terms of computation time.