通过分布式样本分位数推理选择Top-k数据

Xu Zhang, M. Vasconcelos
{"title":"通过分布式样本分位数推理选择Top-k数据","authors":"Xu Zhang, M. Vasconcelos","doi":"10.48550/arXiv.2212.00230","DOIUrl":null,"url":null,"abstract":"We consider the problem of determining the top-$k$ largest measurements from a dataset distributed among a network of $n$ agents with noisy communication links. We show that this scenario can be cast as a distributed convex optimization problem called sample quantile inference, which we solve using a two-time-scale stochastic approximation algorithm. Herein, we prove the algorithm's convergence in the almost sure sense to an optimal solution. Moreover, our algorithm handles noise and empirically converges to the correct answer within a small number of iterations.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-k data selection via distributed sample quantile inference\",\"authors\":\"Xu Zhang, M. Vasconcelos\",\"doi\":\"10.48550/arXiv.2212.00230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of determining the top-$k$ largest measurements from a dataset distributed among a network of $n$ agents with noisy communication links. We show that this scenario can be cast as a distributed convex optimization problem called sample quantile inference, which we solve using a two-time-scale stochastic approximation algorithm. Herein, we prove the algorithm's convergence in the almost sure sense to an optimal solution. Moreover, our algorithm handles noise and empirically converges to the correct answer within a small number of iterations.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.00230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.00230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑从分布在具有噪声通信链路的$n$代理网络中的数据集中确定top- k$最大测量值的问题。我们表明,这种情况可以转换为一个称为样本分位数推理的分布式凸优化问题,我们使用双时间尺度随机近似算法来解决这个问题。在此,我们证明了算法在几乎确定意义下收敛于最优解。此外,我们的算法处理噪声,经验地收敛到正确的答案在少数迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Top-k data selection via distributed sample quantile inference
We consider the problem of determining the top-$k$ largest measurements from a dataset distributed among a network of $n$ agents with noisy communication links. We show that this scenario can be cast as a distributed convex optimization problem called sample quantile inference, which we solve using a two-time-scale stochastic approximation algorithm. Herein, we prove the algorithm's convergence in the almost sure sense to an optimal solution. Moreover, our algorithm handles noise and empirically converges to the correct answer within a small number of iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信