简单透镜系统的机器学习鲁棒性估计

Chia-Wei Chen, Bowen Zhou, T. Längle, J. Beyerer
{"title":"简单透镜系统的机器学习鲁棒性估计","authors":"Chia-Wei Chen, Bowen Zhou, T. Längle, J. Beyerer","doi":"10.1117/12.2603658","DOIUrl":null,"url":null,"abstract":"Tolerance analysis and tolerance sensitivity optimization (desensitization) are important and necessary for manufacturability. However, compared to the optimization of optical performance, tolerance analysis is still time-consuming. A machine learning approach for the fast robustness estimation of lens systems is proposed. The results of the machine learning estimation and the other four different methods are compared with the results of the Monte Carlo analysis. The proposed model is added to the merit function in commercial software for optimization to reduce the sensitivity.","PeriodicalId":386109,"journal":{"name":"International Optical Design Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness estimation of simple lens systems by machine learning\",\"authors\":\"Chia-Wei Chen, Bowen Zhou, T. Längle, J. Beyerer\",\"doi\":\"10.1117/12.2603658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tolerance analysis and tolerance sensitivity optimization (desensitization) are important and necessary for manufacturability. However, compared to the optimization of optical performance, tolerance analysis is still time-consuming. A machine learning approach for the fast robustness estimation of lens systems is proposed. The results of the machine learning estimation and the other four different methods are compared with the results of the Monte Carlo analysis. The proposed model is added to the merit function in commercial software for optimization to reduce the sensitivity.\",\"PeriodicalId\":386109,\"journal\":{\"name\":\"International Optical Design Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Optical Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2603658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Optical Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公差分析和公差灵敏度优化(脱敏)是可制造性的重要和必要条件。然而,与光学性能的优化相比,公差分析仍然是耗时的。提出了一种用于镜头系统鲁棒性快速估计的机器学习方法。将机器学习估计和其他四种不同方法的结果与蒙特卡罗分析的结果进行了比较。将该模型加入到商业软件的优点函数中进行优化,以降低灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness estimation of simple lens systems by machine learning
Tolerance analysis and tolerance sensitivity optimization (desensitization) are important and necessary for manufacturability. However, compared to the optimization of optical performance, tolerance analysis is still time-consuming. A machine learning approach for the fast robustness estimation of lens systems is proposed. The results of the machine learning estimation and the other four different methods are compared with the results of the Monte Carlo analysis. The proposed model is added to the merit function in commercial software for optimization to reduce the sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信