{"title":"H∞不确定性的频域高斯过程模型","authors":"Alex Devonport, P. Seiler, M. Arcak","doi":"10.48550/arXiv.2211.15923","DOIUrl":null,"url":null,"abstract":"Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an H∞ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Domain Gaussian Process Models for H∞ Uncertainties\",\"authors\":\"Alex Devonport, P. Seiler, M. Arcak\",\"doi\":\"10.48550/arXiv.2211.15923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an H∞ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.15923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency Domain Gaussian Process Models for H∞ Uncertainties
Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an H∞ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers.