基于顺序流图的分布式电网分析框架

Chun-Xun Lin, Tsung-Wei Huang, T. Yu, Martin D. F. Wong
{"title":"基于顺序流图的分布式电网分析框架","authors":"Chun-Xun Lin, Tsung-Wei Huang, T. Yu, Martin D. F. Wong","doi":"10.1145/3194554.3194560","DOIUrl":null,"url":null,"abstract":"The ever-increasing design complexities have overwhelmed what is offered by existing EDA tools. As a result, the recent EDA industry is driving the need for distributed computing to leverage large-scale compute-intensive problems, in particular, power grid analysis. In this paper, we introduce a distributed power grid analysis framework based on the stream graph model. We show that the stream graph model has better programmability over the MPI and enables flexible domain decomposition without limited by hardware resource. In addition, we design an efficient scheduling policy for this particular workload to maximize the cluster utilization to improve the performance. The experimental results demonstrated the promising performance of our framework that scales from single multi-core machines to a distributed computer cluster.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Distributed Power Grid Analysis Framework from Sequential Stream Graph\",\"authors\":\"Chun-Xun Lin, Tsung-Wei Huang, T. Yu, Martin D. F. Wong\",\"doi\":\"10.1145/3194554.3194560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-increasing design complexities have overwhelmed what is offered by existing EDA tools. As a result, the recent EDA industry is driving the need for distributed computing to leverage large-scale compute-intensive problems, in particular, power grid analysis. In this paper, we introduce a distributed power grid analysis framework based on the stream graph model. We show that the stream graph model has better programmability over the MPI and enables flexible domain decomposition without limited by hardware resource. In addition, we design an efficient scheduling policy for this particular workload to maximize the cluster utilization to improve the performance. The experimental results demonstrated the promising performance of our framework that scales from single multi-core machines to a distributed computer cluster.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不断增加的设计复杂性已经超过了现有EDA工具所能提供的功能。因此,最近的EDA行业正在推动对分布式计算的需求,以利用大规模计算密集型问题,特别是电网分析。本文介绍了一种基于流图模型的分布式电网分析框架。研究表明,流图模型在MPI上具有更好的可编程性,并且可以在不受硬件资源限制的情况下实现灵活的领域分解。此外,我们为这个特定的工作负载设计了一个有效的调度策略,以最大限度地提高集群利用率,从而提高性能。实验结果表明,我们的框架具有良好的性能,可以从单个多核机器扩展到分布式计算机集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Power Grid Analysis Framework from Sequential Stream Graph
The ever-increasing design complexities have overwhelmed what is offered by existing EDA tools. As a result, the recent EDA industry is driving the need for distributed computing to leverage large-scale compute-intensive problems, in particular, power grid analysis. In this paper, we introduce a distributed power grid analysis framework based on the stream graph model. We show that the stream graph model has better programmability over the MPI and enables flexible domain decomposition without limited by hardware resource. In addition, we design an efficient scheduling policy for this particular workload to maximize the cluster utilization to improve the performance. The experimental results demonstrated the promising performance of our framework that scales from single multi-core machines to a distributed computer cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信